Abstract:
A low-noise amplifier for radio frequency signals uses the magnitude of the input signal to adjust the output current of a current source if the input signal magnitude exceeds a predetermined value. The current source provides operating current to the low-noise amplifier. Compensation for gain reduction due to large input signal magnitude is therefore achieved by increasing the gain of the low noise amplifier in such situations by increased operating current. As a result, power consumption savings and better linearization are achieved, especially for such low-noise amplifiers used in mobile receivers.
Abstract:
A communications device includes a direct-conversion receiver for a radio frequency (RF) signal which is configured to receive the RF signal during defined time slots. A first input receives the RF signal and a first output outputs a baseband signal derived from the RF signal. A mixer module is configured to receive the RF signal and a local signal which is generated by a local oscillator. The mixer module generates an output signal which includes the baseband signal and an offset component. An amplifier module is connected between the first output and the mixer module, and includes a feedback loop which has in a backward path, a track-and-hold circuit. The track-and-hold circuit is configured to track the offset component during a first time slot and to hold a value of the offset component at an end of the first time slot until a subsequent second time slot begins. This held value is applied during the second time slot to the output signal in order to provide for fast compensation of the offset component.
Abstract:
A bias rail buffer circuit and method in accordance with the present invention overcomes many shortcomings of the prior art. A bias rail buffer circuit for providing a reference signal is suitably configured to absorb external disturbances appearing on an output reference signal. A method for absorbing the external disturbances appearing at the output reference signal suitably includes the use of complementary transistors to source current and sink current to said output reference signal, depending on whether the external disturbances are providing a decrease or an increase to the output reference signal. The bias rail buffer circuit suitably includes an input transistor, a first pair of complementary transistors and a second pair of complementary transistors, such that the second pair of complementary transistors operate to source current and sink current to absorb external disturbances imparted on said output reference signal.
Abstract:
A conventional differential transistor pair is provided with a dynamic bias circuit. The input voltage signal for the differential pair is also full-wave rectified and the rectified signal is used to bias dynamically the differential pair while the input voltage signal is being applied. One or more bias transistors having a control electrode fed with the rectified signal is connected in series with the differential pair. The result is that as the input signal magnitude increases the amount of bias increases dynamically and increases linearly for larger signals. Desired responses other than linearity can be achieved by making the signal that is fed to the rectifier vary according to any predetermined function.
Abstract:
A wideband operational amplifier in accordance with the present invention overcomes many shortcomings of the prior art. A wideband operational amplifier may be configured to provide a high output voltage and high output current. The amplifier may comprise an input stage having a first input buffer and a second input buffer, and an output stage amplifier having an output buffer. The input stage may also include current mirrors configured to facilitate a lower input offset voltage and lower input voltage noise. Moreover, the operational amplifier may also provide a wide common-mode input range and full power bandwidth simultaneously.
Abstract:
An improved differential gain stage for a bipolar monolithic integrated circuit. The integrated circuit is formed from a semiconductor substrate, and the differential gain stage includes first and second bipolar transistors. The base of the first transistor and the base of the second transistor form a differential input for the gain stage comprising non-inverting and inverting inputs respectively. The collectors of the transistors form a differential output. The differential gain stage includes a capacitor stage comprising: a peaking capacitor, and first, second, third and fourth capacitor structures. The peaking capacitor is coupled between the emitters of the first and second transistors. The first and second capacitor structures are located at a first spaced relationship from the substrate and the first capacitor is coupled to the emitter of the first transistor and the second capacitor is coupled to the emitter of the second transistor. The third and fourth capacitor structures are located at a second spaced relationship from the substrate. The third capacitor is connected to the first capacitor and the connection forms a first node. The fourth capacitor is connected to the second capacitor and the connection forms a second node. The differential gain stage also includes first and second buffers. The first buffer has an input connected to the non-inverting input of the gain stage and an output connected to the first node. The second buffer has an input connected to the inverting input of the gain stage and an output connected to the second node.
Abstract:
An operational amplifier includes a PNP differential amplifier operable for low common mode input voltages and an NPN differential amplifier operable for high common mode input voltages so that the operational amplifier is operable over a range of common mode input voltages that includes substantially the positive and negative supply voltages.