Abstract:
A differential input stage for an operational transconductance amplifier is provided with complementary input transistor pairs. For each pair, a diode dummy load is provided. When the common mode input signal is near the positive or negative supply voltage, one of the pairs turns off. The diode loads act to increase the current through the other pair when this occurs. This results in the provision of a constant transconductance over the entire common mode input range.
Abstract:
An input stage of an operational amplifier uses current sources to allow first and second differential input transistor pairs to operate near the power supply rails. The output stage of the operational amplifier also operates within a saturation potential of the power supply rails. The first differential input transistor pair operates when the input signal is less than a predetermined threshold, while the second differential input transistor pair operates when the input signal is greater than the predetermined threshold. A detection circuit at the input terminals prevents phase inversion of the output signal should the inputs be driven beyond the power supply rails. A current cancellation circuit removes current variation induced by voltage changes at the output of the input stage and provides high gain and low input offset voltage.
Abstract:
There is disclosed a differential amplifier which comprises bipolar transistors which may be produced using MOS technology and wherein the amplifier is particularly useful when the transistors have a poorly defined current gain. The amplifier includes a first pair of transistors having emitters connected in common and having bases forming the inputs to the differential amplifier. A second pair of transistors identical to the first pair are coupled such that the emitters and bases of said second pair are connected respectively to the emitters and bases of the first pair. The collectors of the second pair of transistors are connected to a current generator and to the input of a transconductance amplifier such that the transconductance amplifier causes the sum of the emitter currents of the first and second pairs of transistors to be controlled by the current supplied by the current generator.
Abstract:
A common mode linearized input stage comprises NPN and PNP differential pairs biased with respective tail currents at respective common emitter nodes, with each pair connected to receive a differential input signal. A tail current modulation circuit generates complementary output currents as a function of the voltage difference between the common emitter nodes, and first and second tail current sources generate the tail currents as a function of the complementary output currents. The tail current modulation circuit and the first and second tail current sources are arranged such that the magnitudes of the tail currents increase with an increasing differential input signal.
Abstract:
An amplifier circuit having an amplifier stage is specified, in which, in order to avoid breakdown effects in the transistors thereof, an in-phase regulator is provided which, on the load side, is connected on the one hand to the amplifier stage and on the other hand to a reference-ground potential terminal, and which limits the voltage dropped across the amplifier stage. The in-phase regulator on the reference-ground potential side also enables the use of standard components at high supply voltages. The amplifier circuit can be used for example as a radio frequency output stage.
Abstract:
A current mirror circuit in accordance with the present invention overcomes many shortcomings of the prior art. A current mirror circuit for providing a current reference signal suitably includes at least one degeneration resistor to provide more degeneration for lower voltage noise while also including at least one clamping device to preventing saturation of the current mirror. The clamping device suitably comprises at least one diode, such as, for example, a Schottky-type diode. Moreover, the clamping device can be suitably configured to facilitate a higher slew rate of the current mirror circuit.
Abstract:
A conventional differential transistor pair is provided with a dynamic bias circuit. The input voltage signal for the differential pair is also full-wave rectified and the rectified signal is used to bias dynamically the differential pair while the input voltage signal is being applied. One or more bias transistors having a control electrode fed with the rectified signal is connected in series with the differential pair. The result is that as the input signal magnitude increases the amount of bias increases dynamically and increases linearly for larger signals. Desired responses other than linearity can be achieved by making the signal that is fed to the rectifier vary according to any predetermined function.
Abstract:
A conventional differential transistor pair is provided with a dynamic bias circuit. The input voltage signal for the differential pair is also full-wave rectified and the rectified signal is used to bias dynamically the differential pair while the input voltage signal is being applied. One or more bias transistors having a control electrode fed with the rectified signal is connected in series with the differential pair. The result is that as the input signal magnitude increases the amount of bias increases dynamically and increases linearly for larger signals. Desired responses other than linearity can be achieved by making the signal that is fed to the rectifier vary according to any predetermined function.
Abstract:
An amplifier includes two complementary differential input stages and a first current source that is switched as a function of the input voltage of the amplifier in order to render active one or the other of the input stages by establishing the quiescent current of the input stage. A folded cascode stage has two cascode transistors whose currents are determined by a bias voltage of these transistors and reduced by the currents circulating in the output branches of a first of the differential input stages. Circuitry switched at the same time as the first current source for maintaining a constant current in the cascode transistors when one of the differential stages changes between an active state and an inactive state.