摘要:
A modular Atomic Force Microscope that allows ultra-high resolution imaging and measurements in a wide variety of environmental conditions is described. The instrument permits such imaging and measurements in environments ranging from ambient to liquid or gas or extremely high or extremely low temperatures.
摘要:
A control-based approach is provided for achieving accurate indentation quantification in broadband and in-liquid nanomechanical property measurements using atomic force microscope (AFM). Accurate indentation measurement is desirable for probe-based material property characterization because the force applied and the indentation generated are the fundamental physical variables that are measured in the characterization process. Large measurement errors, however, occur when the measurement frequency range becomes large (i.e., broadband), or the indentation is measured in liquid on soft materials. Such large measurement errors are generated due to the inability of the conventional method to account for the convolution of the instrument dynamics with the viscoelastic response of the soft sample when the measurement frequency becomes large, and the random-like thermal drift and the distributive hydrodynamic force effects when measuring the indentation in liquid.
摘要:
An apparatus for electrical inspection is disclosed. The apparatus comprises an inert gas delivery system that delivers inert gas near a microscope imaging element and electrical test probes. A gas supply provides an inert gas such as argon or nitrogen. The inert gas displaces oxygen to prevent premature oxidation of the test probes. In one embodiment, one or more delivery tubes deliver inert gas to the measurement area.
摘要:
A controller of a cantilever evaluation system calculates a stream function value ψz(x, y; t+1) and vorticity ωz(x, y; t+1) at a subsequent time step t+1 using boundary conditions according to displacement h(z; t) of a cantilever and velocity δh/δt(z; t), a stream function value φz(x, y; t) and vorticity ωz(x, y; t) in two-dimensional planes. The controller uses the calculated stream function value φz(x, y) and vorticity ωz(x, y) to calculate a fluid drag force acting on the cantilever. The controller substitutes the calculated fluid drag force into a displacement calculation equation to calculate the displacement h(z; t+1) of the one-dimensional beam at the subsequent time step t+1. The controller repeats such calculation for each grid point and further repeats it at each time step.
摘要翻译:悬臂评估系统的控制器使用根据位移h(的边界条件)在随后的时间步长t + 1处计算流函数值ψz(x,y; t + 1)和涡度ωz(x,y; t + z; t)和速度δh/δt(z; t),二维平面中的流函数值&phgr; z(x,y; t)和涡度ωz(x,y; t)。 控制器使用计算的流函数值&phgr; z(x,y)和涡度ωz(x,y)来计算作用在悬臂上的流体阻力。 控制器将计算的流体阻力代入位移计算方程,以计算随后时间步长t + 1时一维梁的位移h(z; t + 1)。 控制器对每个网格点重复这样的计算,并在每个时间步长进一步重复该计算。
摘要:
In the context of a measurement method in which scanning capacitance microscope(s) detecting surface(s) by means of electrically conductive probe(s) are used to measure electrical capacitance(s) of semiconductor sample surface(s), clean surface(s) are formed on semiconductor sample(s) by surface treatment; such semiconductor sample(s) are thereafter promptly placed in ultrahigh vacuum environment(s) (or inert gas environment(s)) and are maintained therein; and while still in this state, electrically conductive probe(s), on whose surface(s) stable insulating film(s) (e.g., vapor-deposited insulating diamond film(s)) are formed, are used to measure electrical capacitance(s) of semiconductor sample surface(s) while in ultrahigh vacuum environment(s) (or inert gas environment(s)).
摘要:
A gas (or fluid) is introduced around an SPM probe or nanotool™ to control chemical activity e.g., oxygen to promote oxidation, argon to inhibit oxidation or clean dry air (CDA) to inhibit moisture to control static charging due to the action of the probe or nanotools and to provide vacuum at and around the tip and substrate area. Electrical current can be produced for use with active electronic devices on, in or near the body of the device. In addition by use of a fluid like water, certain oils, and other liquids in conjunction with specific tip structure either electric discharge machining can be used at the tip area on the tip itself (in conjunction with a form structure on the work piece) or on a work piece beneath the tip to shape, polish and remove material at very small scales (10 microns to 1 nm or less).
摘要:
A control-based approach is provided for achieving accurate indentation quantification in broadband and in-liquid nanomechanical property measurements using atomic force microscope (AFM). Accurate indentation measurement is desirable for probe-based material property characterization because the force applied and the indentation generated are the fundamental physical variables that are measured in the characterization process. Large measurement errors, however, occur when the measurement frequency range becomes large (i.e., broadband), or the indentation is measured in liquid on soft materials. Such large measurement errors are generated due to the inability of the conventional method to account for the convolution of the instrument dynamics with the viscoelastic response of the soft sample when the measurement frequency becomes large, and the random-like thermal drift and the distributive hydrodynamic force effects when measuring the indentation in liquid.
摘要:
An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.
摘要:
Disclosed is a method for measuring the force interaction caused by a sample, wherein a bias voltage, with respect to the sample, is applied between a tip, and the tip is guided at such a small distance to the sample that a measurable current flows between the tip and the sample, and a sensor and signal converter S, which changes the current flowing through the tip-sample contact depending on the intensity of the force interaction, is formed and used in the region of the force interaction. A scanning tunneling microscope therefor is disclosed.
摘要:
The following invention pertains to the introduction of a gas (or fluid) around a SPM probe or Nanotool™ to control chemical activity e.g. oxygen to promote oxidation, argon to inhibit oxidation or clean dry air (CDA) to inhibit moisture to control static charging due to the action of the probe or nanotools and to provide vacuum at and around the tip and substrate area. The invention can also produce electrical current for use with active electronic devices on, in or near the body of the device. In addition by use of a fluid like water, certain oils, and other liquids in conjunction with specific tip structure either electric discharge machining can be used at the tip area on the tip itself (in conjunction with a form structure on the work piece) or on a work piece beneath the tip to shape, polish and remove material at very small scales (10 microns to 1 nm or less).