Method and apparatus for nanomechanical measurement using an atomic force microscope
    12.
    发明授权
    Method and apparatus for nanomechanical measurement using an atomic force microscope 有权
    使用原子力显微镜进行纳米机械测量的方法和装置

    公开(公告)号:US08973161B2

    公开(公告)日:2015-03-03

    申请号:US13925441

    申请日:2013-06-24

    申请人: Qingze Zou Juan Ren

    发明人: Qingze Zou Juan Ren

    摘要: A control-based approach is provided for achieving accurate indentation quantification in broadband and in-liquid nanomechanical property measurements using atomic force microscope (AFM). Accurate indentation measurement is desirable for probe-based material property characterization because the force applied and the indentation generated are the fundamental physical variables that are measured in the characterization process. Large measurement errors, however, occur when the measurement frequency range becomes large (i.e., broadband), or the indentation is measured in liquid on soft materials. Such large measurement errors are generated due to the inability of the conventional method to account for the convolution of the instrument dynamics with the viscoelastic response of the soft sample when the measurement frequency becomes large, and the random-like thermal drift and the distributive hydrodynamic force effects when measuring the indentation in liquid.

    摘要翻译: 提供了一种基于控制的方法,用于使用原子力显微镜(AFM)在宽带和液体内纳米机械性能测量中实现精确的压痕量化。 由于施加的力和产生的压痕是在表征过程中测量的基本物理变量,所以精确的压痕测量对于基于探针的材料性质表征是理想的。 然而,当测量频率范围变大(即,宽带)或在软质材料上以液体测量压痕时,会发生大的测量误差。 由于传统方法不能在测量频率变大时考虑到仪器动力学与软样品的粘弹性响应的卷积,以及随机样热漂移和分布流体动力 测量液体中的压痕时的效果。

    CANTILEVER EVALUATION SYSTEM, CANTILEVER EVALUATION METHOD, AND CANTILEVER EVALUATION PROGRAM
    14.
    发明申请
    CANTILEVER EVALUATION SYSTEM, CANTILEVER EVALUATION METHOD, AND CANTILEVER EVALUATION PROGRAM 失效
    CANTILEVER评估系统,CANTILEVER评估方法和CANTILEVER评估程序

    公开(公告)号:US20100204968A1

    公开(公告)日:2010-08-12

    申请号:US12677607

    申请日:2008-10-22

    IPC分类号: G06F17/50

    CPC分类号: G01Q30/12 G01Q30/04

    摘要: A controller of a cantilever evaluation system calculates a stream function value ψz(x, y; t+1) and vorticity ωz(x, y; t+1) at a subsequent time step t+1 using boundary conditions according to displacement h(z; t) of a cantilever and velocity δh/δt(z; t), a stream function value φz(x, y; t) and vorticity ωz(x, y; t) in two-dimensional planes. The controller uses the calculated stream function value φz(x, y) and vorticity ωz(x, y) to calculate a fluid drag force acting on the cantilever. The controller substitutes the calculated fluid drag force into a displacement calculation equation to calculate the displacement h(z; t+1) of the one-dimensional beam at the subsequent time step t+1. The controller repeats such calculation for each grid point and further repeats it at each time step.

    摘要翻译: 悬臂评估系统的控制器使用根据位移h(的边界条件)在随后的时间步长t + 1处计算流函数值ψz(x,y; t + 1)和涡度ωz(x,y; t + z; t)和速度δh/δt(z; t),二维平面中的流函数值&phgr; z(x,y; t)和涡度ωz(x,y; t)。 控制器使用计算的流函数值&phgr; z(x,y)和涡度ωz(x,y)来计算作用在悬臂上的流体阻力。 控制器将计算的流体阻力代入位移计算方程,以计算随后时间步长t + 1时一维梁的位移h(z; t + 1)。 控制器对每个网格点重复这样的计算,并在每个时间步长进一步重复该计算。

    Method of measuring electrical capacitance

    公开(公告)号:US06828804B2

    公开(公告)日:2004-12-07

    申请号:US10726566

    申请日:2003-12-04

    IPC分类号: G01R2726

    摘要: In the context of a measurement method in which scanning capacitance microscope(s) detecting surface(s) by means of electrically conductive probe(s) are used to measure electrical capacitance(s) of semiconductor sample surface(s), clean surface(s) are formed on semiconductor sample(s) by surface treatment; such semiconductor sample(s) are thereafter promptly placed in ultrahigh vacuum environment(s) (or inert gas environment(s)) and are maintained therein; and while still in this state, electrically conductive probe(s), on whose surface(s) stable insulating film(s) (e.g., vapor-deposited insulating diamond film(s)) are formed, are used to measure electrical capacitance(s) of semiconductor sample surface(s) while in ultrahigh vacuum environment(s) (or inert gas environment(s)).

    Fluid Delivery for Scanning Probe Microscopy
    16.
    发明申请
    Fluid Delivery for Scanning Probe Microscopy 审中-公开
    流体输送用于扫描探针显微镜

    公开(公告)号:US20140082776A1

    公开(公告)日:2014-03-20

    申请号:US13904892

    申请日:2013-05-29

    申请人: Victor B. Kley

    发明人: Victor B. Kley

    IPC分类号: G01Q60/00

    摘要: A gas (or fluid) is introduced around an SPM probe or nanotool™ to control chemical activity e.g., oxygen to promote oxidation, argon to inhibit oxidation or clean dry air (CDA) to inhibit moisture to control static charging due to the action of the probe or nanotools and to provide vacuum at and around the tip and substrate area. Electrical current can be produced for use with active electronic devices on, in or near the body of the device. In addition by use of a fluid like water, certain oils, and other liquids in conjunction with specific tip structure either electric discharge machining can be used at the tip area on the tip itself (in conjunction with a form structure on the work piece) or on a work piece beneath the tip to shape, polish and remove material at very small scales (10 microns to 1 nm or less).

    摘要翻译: 在SPM探针或nanotool™周围引入气体(或流体)以控制化学活性,例如氧气以促进氧化,氩气抑制氧化或清洁干燥空气(CDA)以抑制湿气以控制由于 探针或纳米工具,并在尖端和基底区域周围提供真空。 可以产生电流,用于与设备的主体中,外部或附近的有源电子设备一起使用。 此外,通过使用像水一样的流体,某些油和其他液体结合特定的尖端结构,可以在尖端本身的尖端区域(结合工件上的形式结构)或 在尖端下方的工件上以非常小的尺度(10微米至1纳米或更小)成型,抛光和去除材料。

    Method and Apparatus for Nanomechanical Measurement Using an Atomic Force Microscope
    17.
    发明申请
    Method and Apparatus for Nanomechanical Measurement Using an Atomic Force Microscope 有权
    使用原子力显微镜进行纳米机械测量的方法和装置

    公开(公告)号:US20130347147A1

    公开(公告)日:2013-12-26

    申请号:US13925441

    申请日:2013-06-24

    申请人: Qingze Zou Juan Ren

    发明人: Qingze Zou Juan Ren

    IPC分类号: G01Q60/38

    摘要: A control-based approach is provided for achieving accurate indentation quantification in broadband and in-liquid nanomechanical property measurements using atomic force microscope (AFM). Accurate indentation measurement is desirable for probe-based material property characterization because the force applied and the indentation generated are the fundamental physical variables that are measured in the characterization process. Large measurement errors, however, occur when the measurement frequency range becomes large (i.e., broadband), or the indentation is measured in liquid on soft materials. Such large measurement errors are generated due to the inability of the conventional method to account for the convolution of the instrument dynamics with the viscoelastic response of the soft sample when the measurement frequency becomes large, and the random-like thermal drift and the distributive hydrodynamic force effects when measuring the indentation in liquid.

    摘要翻译: 提供了一种基于控制的方法,用于使用原子力显微镜(AFM)在宽带和液体内纳米机械性能测量中实现精确的压痕量化。 由于施加的力和产生的压痕是在表征过程中测量的基本物理变量,所以精确的压痕测量对于基于探针的材料性质表征是理想的。 然而,当测量频率范围变大(即,宽带)或在软质材料上以液体测量压痕时,会发生大的测量误差。 由于传统方法不能在测量频率变大时考虑到仪器动力学与软样品的粘弹性响应的卷积,以及随机样热漂移和分布流体动力 测量液体中的压痕时的效果。

    Scanning Tunneling Microscope Assembly, Reactor, and System
    18.
    发明申请
    Scanning Tunneling Microscope Assembly, Reactor, and System 有权
    扫描隧道显微镜组件,反应器和系统

    公开(公告)号:US20120244038A1

    公开(公告)日:2012-09-27

    申请号:US13388223

    申请日:2010-06-22

    IPC分类号: G01N21/00 G01Q60/10

    摘要: An embodiment of a scanning tunneling microscope (STM) reactor includes a pressure vessel, an STM assembly, and three spring coupling objects. The pressure vessel includes a sealable port, an interior, and an exterior. An embodiment of an STM system includes a vacuum chamber, an STM reactor, and three springs. The three springs couple the STM reactor to the vacuum chamber and are operable to suspend the scanning tunneling microscope reactor within the interior of the vacuum chamber during operation of the STM reactor. An embodiment of an STM assembly includes a coarse displacement arrangement, a piezoelectric fine displacement scanning tube coupled to the coarse displacement arrangement, and a receiver. The piezoelectric fine displacement scanning tube is coupled to the coarse displacement arrangement. The receiver is coupled to the piezoelectric scanning tube and is operable to receive a tip holder, and the tip holder is operable to receive a tip.

    摘要翻译: 扫描隧道显微镜(STM)反应器的一个实施例包括压力容器,STM组件和三个弹簧耦合物体。 压力容器包括可密封的端口,内部和外部。 STM系统的实施例包括真空室,STM反应器和三个弹簧。 三个弹簧将STM反应器耦合到真空室,并且可操作以在STM反应器的操作期间将扫描隧道显微镜反应器悬挂在真空室内部。 STM组件的实施例包括粗排列布置,耦合到粗位移布置的压电精细位移扫描管和接收器。 压电精细位移扫描管耦合到粗排位置。 接收器耦合到压电扫描管并且可操作以接收尖端保持器,并且尖端保持器可操作以接收尖端。

    METHOD FOR MEASURING THE FORCE INTERACTION THAT IS CAUSED BY A SAMPLE
    19.
    发明申请
    METHOD FOR MEASURING THE FORCE INTERACTION THAT IS CAUSED BY A SAMPLE 有权
    用于测量由样品引起的力相互作用的方法

    公开(公告)号:US20120151638A1

    公开(公告)日:2012-06-14

    申请号:US13390623

    申请日:2010-08-27

    IPC分类号: G01Q60/10

    CPC分类号: G01Q60/16 G01Q30/12

    摘要: Disclosed is a method for measuring the force interaction caused by a sample, wherein a bias voltage, with respect to the sample, is applied between a tip, and the tip is guided at such a small distance to the sample that a measurable current flows between the tip and the sample, and a sensor and signal converter S, which changes the current flowing through the tip-sample contact depending on the intensity of the force interaction, is formed and used in the region of the force interaction. A scanning tunneling microscope therefor is disclosed.

    摘要翻译: 公开了一种用于测量由样品引起的力相互作用的方法,其中相对于样品的偏置电压施加在尖端之间,并且尖端在如此小的距离被引导到样品,使得可测量的电流在样品之间流动 尖端和样品,以及传感器和信号转换器S,其根据力相互作用的强度改变流过尖端样品接触的电流,并在力相互作用的区域中使用。 公开了一种扫描隧道显微镜。

    Fluid delivery for scanning probe microscopy
    20.
    发明授权
    Fluid delivery for scanning probe microscopy 有权
    用于扫描探针显微镜的流体输送

    公开(公告)号:US07930766B2

    公开(公告)日:2011-04-19

    申请号:US12399165

    申请日:2009-03-06

    申请人: Victor B. Kley

    发明人: Victor B. Kley

    IPC分类号: H01J37/244

    摘要: The following invention pertains to the introduction of a gas (or fluid) around a SPM probe or Nanotool™ to control chemical activity e.g. oxygen to promote oxidation, argon to inhibit oxidation or clean dry air (CDA) to inhibit moisture to control static charging due to the action of the probe or nanotools and to provide vacuum at and around the tip and substrate area. The invention can also produce electrical current for use with active electronic devices on, in or near the body of the device. In addition by use of a fluid like water, certain oils, and other liquids in conjunction with specific tip structure either electric discharge machining can be used at the tip area on the tip itself (in conjunction with a form structure on the work piece) or on a work piece beneath the tip to shape, polish and remove material at very small scales (10 microns to 1 nm or less).

    摘要翻译: 以下发明涉及在SPM探针或Nanotool TM周围引入气体(或流体)以控制化学活性,例如。 氧气促进氧化,氩气抑制氧化或清洁干燥空气(CDA)以抑制水分,由于探针或纳米工具的作用而控制静电荷,并在尖端和底物区域及其周围提供真空。 本发明还可以产生电流,用于与设备的主体中或其附近的有源电子设备一起使用。 此外,通过使用像水一样的流体,某些油和其他液体结合特定的尖端结构,可以在尖端本身的尖端区域(结合工件上的形式结构)或 在尖端下方的工件上以非常小的尺度(10微米至1纳米或更小)成型,抛光和去除材料。