Abstract:
An article includes fibers formed from a compound having the general chemical formula R—Si—H. In this formula, R is an organic or an inorganic group. The fibers also have metal disposed thereon. The article is formed from a method including two steps. The method of forming the article includes the step of electrospinning the compound to form the fibers. The method also includes the step of disposing the metal onto the fibers to form the article.
Abstract:
The invention concerns a fiber derived from 4,4′diaminodiphenyl sulfone amine monomer and a plurality of acid monomers; and yarns, fabrics and garments comprising this fiber, and methods of making the same. This fiber has use in heat-resistant protective apparel fabrics and garments.
Abstract:
A process is provided that includes attaching a zwitterion to a polymer or a copolymer, wherein the polymer or copolymer comprises a polyarylene ether or a polyarylene.
Abstract:
Embodiments of this invention are directed to polyaniline derivatives and methods of synthesizing and using the same. The invention is also directed to polyaniline derivatives that can be synthesized without the need for templates or functional dopants by using an initiator as part of a reaction mixture.
Abstract:
The present invention provides a nanoporous fiber being substantially free from coarse pores and having homogeneously dispersed nanopores, unlike conventional porous fibers. A porous fiber has pores each having a diameter of 100 nm or less, in which the area ratio of pores each having a diameter of 200 nm or more to the total cross section of the fiber is 1.5% or less, and the pores are unconnected pores, or a porous fiber has pores each having a diameter of 100 nm or less, in which the area ratio of pores each having a diameter of 200 nm or more to the total cross section of the fiber is 1.5% or less, the pores are connected pores, and the fiber has a strength of 1.0 cN/dtex or more.
Abstract:
A method for curing aminoplasts, during which layers having layer thicknesses of up to 300 um or filaments and fiber fibrids having a diameter of up to 300 um, which consist of: i) 95 to 99.95% by mass of solvent-free meltable aminoplast polycondensates with molar masses ranging from 1000 to 300000; j) 5 to 0.05% by mass of curing agents, which can be activated by actinic light and which are comprised of acidifiers of the blocked sulfonic acid and/or halogen-substituted triazine derivative and/or onium salt type, and optionally; k) 1 to 20% by mass, with regard to the meltable aminoplast polycondensates, of unmodified and/or modified maleic anhydride copolymers, and/or; i) 0.1 to 5% by mass, with regard to the meltable aminoplast polycondensates, of nanoparticles. The aminoplasts are cured by irradiating them with actinic light at a temperature between the melting point of the aminoplast polycondensate and the thermoinduced decomposition temperature of the light-activatable curing agents. This method enables the production of, preferably, textile fabrics or coatings.
Abstract:
The present invention provides a nanoporous fiber being substantially free from coarse pores and having homogeneously dispersed nanopores, unlike conventional porous fibers. A porous fiber has pores each having a diameter of 100 nm or less, in which the area ratio of pores each having a diameter of 200 nm or more to the total cross section of the fiber is 1.5% or less, and the pores are unconnected pores, or a porous fiber has pores each having a diameter of 100 nm or less, in which the area ratio of pores each having a diameter of 200 nm or more to the total cross section of the fiber is 1.5% or less, the pores are connected pores, and the fiber has a strength of 1.0 cN/dtex or more.
Abstract:
There is provided a polyketone comprising repeating units, 95-100 mole % of which are 1-oxotrimethylene and having an intrinsic viscosity of 2.5-20 dl/g, wherein the content of Pd element is 0-20 ppm, terminal structures include an alkyl ester group (terminal group A) and an alkyl ketone group (terminal group B), and the equivalent ratio of terminal group A/terminal group B is 0.1-8.0. The polyketone of the present invention can be used in any forms, such as fibers and films, and can be applied to a wide variety of the uses such as clothing, reinforcing materials for rubbers, resins, cements, and optical fibers, electronic materials, battery materials, civil engineering materials, medical materials, daily commodities, fishery materials, and packaging materials.
Abstract:
A conductive (electrical, ionic, and photoelectric) polymer membrane article, comprising a non-woven membrane of polymer fibers, wherein at least some of the fibers have diameters of less than one micron; and wherein the membrane has an electrical conductivity of at least about 10−6 S/cm. Also disclosed is the method of making such an article, comprising electrostatically spinning a spin dope comprising a polymer carrier and/or a conductive polymer or conductive nanoparticles, to provide inherent conductivity in the article.
Abstract translation:一种导电(电,离子和光电)聚合物膜制品,其包含聚合物纤维的无纺膜,其中至少一些纤维的直径小于1微米; 并且其中所述膜具有至少约10 -6 S / cm的导电率。 还公开了制备这种制品的方法,包括静电纺丝包含聚合物载体和/或导电聚合物或导电纳米颗粒的自旋纺丝原液,以在制品中提供固有的导电性。
Abstract:
Rigid-rod and segmented rigid-rod polymers, methods for preparing the polymers and useful articles incorporating the polymers are provided. The polymers incorporate rigid-rod backbones with pendant solubilizing groups attached thereto for rendering the polymers soluble.