Abstract:
Provided is an aqueous binder composition for a secondary battery electrode, comprising a copolymer and a dispersion medium, wherein the copolymer comprises a structural unit (a) derived from a carboxylic acid group-containing monomer, a structural unit (b) derived from an amide group-containing monomer, a structural unit (c) derived from a nitrile group-containing monomer, and at least one anionic reactive emulsifier, with an improved binding capability. In addition, battery cells comprising the cathode prepared using the binder composition disclosed herein exhibits exceptional electrochemical performance.
Abstract:
The present invention relates to coated polymer particles comprising a water-swellable polymer core and an essentially continuous coating encapsulating the core. The coating comprises an oxide, hydroxide or oxide hydrate of silicon, aluminum, zirconium, tin or titanium. The polymer particles do not show instantaneous swelling, when contacted with water or a water-containing liquid, but show delayed water absorption after an appropriate period of time. The coated polymer particles may be used in oil fields, in mining, for construction chemical compositions or as carrier for active substances. The coated polymer particles are prepared by a suspension coating process or a fluidized bed coating process.
Abstract:
Heat-expandable microspheres include a shell of thermoplastic resin and a blowing agent encapsulated therein having a boiling point not higher than the softening point of the thermoplastic resin, have a maximum expanding ratio not lower than 50 times, and are thermally expanded into hollow particulates having a repeated-compression durability not lower than 75 percent. The method of producing the heat-expandable microspheres includes the steps of dispersing an oily mixture containing a polymerizable component and the blowing agent in an aqueous dispersing medium containing a specific water-soluble compound and polymerizing the polymerizable component contained in the oily mixture.
Abstract:
Disclosed are a maleimide-α-alkylstyrene-based, heat-resistant bulk tetrapolymer and a preparation process thereof. More specifically, disclosed are a bulk tetrapolymer, comprising 5-60 wt % of an N-substituted maleimide monomer, 10-70 wt % of an α-alkylstyrene monomer, 5-50 wt % of an unsaturated nitrile monomer and 3-50 wt % of an aromatic vinyl monomer, as well as a continuous bulk polymerization process for preparing the same. The disclosed bulk tetrapolymer has a weight-average molecular weight (Mw) of 70,000-300,000 and a glass transition temperature of 150-200° C., shows excellent high-temperature thermal stability and heat resistance and a remarkably low melt viscosity, and thus is excellent not only in processability, but also in productivity, processability, moldability and blendability, when it is blended with other resins. Also, the continuous bulk polymerization process is equipped with a devolatilizer and enables the bulk tetrapolymer to be produced at low cost and high efficiency.
Abstract:
Hydrophilic polymers of the type suitable for use in making contact lenses and having a wide range of controllable properties including strength and gas permeability are formed from acrylonitrile or methyl methacrylate or an analogue thereof, 1-vinyl-2-pyrrolidinone and an appropriate amount of a cross-linking agent. Contact lenses (3) having an interferometric pattern thereon are also disclosed.
Abstract:
An acrylic fiber useful in the preparation of precursor fibers for the preparation of carbon or graphite fibers contains 93.0-99.4 mol percent acrylonitrile, 0.6-4.0 mol percent of ammonium or amine having a pKb of 5 or less as neutralizing cations for sulfonic and sulfuric acid end groups derived from the initiator and activator and as neutralizing cations for sulfonic acid groups derived from one or more sulfonic acid containing comonomers and 0-3.0 mol percent of one or more comonomers selected from the group consisting of simple acrylate or methacrylate esters, simply vinyl esters, styrene, vinyl chloride and vinylidene chloride, the fiber containing no more than 0.3 mol percent of cations other than ammonium or amine.
Abstract:
Provided is a slurry composition for a non-aqueous secondary battery positive electrode that has excellent stability and enables formation of a positive electrode mixed material layer that causes a non-aqueous secondary battery to display excellent output characteristics. The slurry composition contains a positive electrode active material and a copolymer. The proportion constituted by nickel among transition metal in the positive electrode active material is at least 30.0 mol % and not more than 100.0 mol %. The copolymer includes a nitrile group-containing monomer unit in a proportion of at least 70.0 mass % and not more than 96.0 mass % and a basic group-containing monomer unit in a proportion of at least 0.1 mass % and not more than 5.0 mass %.
Abstract:
Object:To provide thermally expandable microspheres having little sag.Resolution Means:The thermally expandable microspheres have a structure in which a foaming agent is encapsulated in an outer shell formed from a polymer, wherein, the ratio (%) of (R2/R1)×100 is at least 105%, where R1 is the expansion ratio after the thermally expandable microspheres have been heat-treated for 5 minutes at 150° C. and then foamed by heating for 2 minutes at 200° C., and R2 is the expansion ratio after the thermally expandable microspheres have been heat-treated for 5 minutes at 150° C. and then foamed by heating for 4 minutes at 200° C.
Abstract:
The invention is directed to melt-processable carbon fiber precursors which have the capability of thermal stabilization in air followed by carbonization in inert atmosphere which make them cost effective and widen their applications.
Abstract:
The invention relates to highly biocompatible or biophilic un-cross-linked or cross-linked polymers comprising one or more side-chain active acrylic amino acids of formula I. The invention further concerns various highly biocompatible, cross-linked co-polymers comprising one or more monomers of formula I, and one or more other polymerizable monomers. Uses of such polymers and co-polymers for the production of contact lenses, intraocular lenses, implants, wound healing slabs, additives for food and cosmetics, conductive plastics, spinnable fibers, and the like are disclosed.