Abstract:
Various embodiments provide a self-sealing system comprising a visco-elastic sealant material, an enclosed multi-cell structure surrounding the visco-elastic sealant material, and an integral pressure reservoir configured to maintain positive pressure within the enclosed multi-cell structure and provide potential energy to move the visco-elastic sealant material. In one embodiment, the enclosed multi-cell structure can have first and second skins, and an outer edge configured to contain visco-elastic sealant material between first and second skins. In one embodiment, the enclosed multi-cell structure can also have a plurality of nodes configured to connect first 100 and second skins. In one embodiment, at least one of the nodes has elasticity and can function as a tension spring. In one embodiment, at least one of nodes is loaded with releasable tension to provide a portion of the potential energy to move the visco-elastic sealant material.
Abstract:
A tube joint for a fuel tank includes a joint body having a tubular shape, and a barrier layer covering the inner surface of the joint body. The joint body is formed of a material which is weldable to a tank body, and the barrier layer is formed of a material which has fuel impermeability and a predetermined hardness. The barrier layer has an extension portion extending from a distal end of the joint body along an axial direction of the joint body. The extension portion includes a projecting portion which protrudes radially and outwardly of the extension portion at or adjacent to a proximal end of the extension portion such that a seal groove is formed between the projecting portion and the joint body, and a nail portion which protrudes radially and outwardly of the extension portion at or adjacent to a distal end of the extension portion.
Abstract:
A mount for a double-walled vessel includes a first support to support the mount against an outer wall of the double-walled vessel, a second support to support the mount against an inner wall of the double-walled vessel, and a flexible member connecting the first support and the second support. The first support and can be arranged at a first end of the flexible member and the second support can be arranged at a second end of the flexible member opposite to the first end. Further described are a vessel including at least one such mount as well as a vehicle including such vessel.
Abstract:
Various embodiments provide a self-sealing system comprising a visco-elastic sealant material, an enclosed multi-cell structure surrounding the visco-elastic sealant material, and an integral pressure reservoir configured to maintain positive pressure within the enclosed multi-cell structure and provide potential energy to move the visco-elastic sealant material. In one embodiment, the enclosed multi-cell structure can have first and second skins, and an outer edge configured to contain visco-elastic sealant material between first and second skins. In one embodiment, the enclosed multi-cell structure can also have a plurality of nodes configured to connect first 100 and second skins. In one embodiment, at least one of the nodes has elasticity and can function as a tension spring. In one embodiment, at least one of nodes is loaded with releasable tension to provide a portion of the potential energy to move the visco-elastic sealant material.
Abstract:
A thermal insulating structure of a fuel tank for a motor vehicle, which is readily produced and attached without using any protector for a thermal insulating member. In the thermal insulating structure of the fuel tank mounted under a floor panel of the motor vehicle, at least an entire side surface and an entire bottom surface of the fuel tank are covered with a thermal insulating member that is formed previously. The thermal insulating member includes a foamed layer on an interior side thereof, and an outer layer made of a solid material. The thermal insulating member is attached to the floor panel along with the fuel tank by means of a tank attaching member.
Abstract:
A mounting structure wherein a buffer member has a body portion, and a leg portion which is extended from the body portion and engaged with a recess, wherein the body portion has a plurality of first convex portions which are arranged around a center axis of the body portion at regular intervals and abut against a vehicle body, a plurality of first concave portions each of which is formed between the adjacent first convex portions, a plurality of second convex portions which are arranged around the center axis of the body portion 61 at regular intervals and abut the fuel tank, and a plurality of second concave portions each of which is formed between the adjacent second convex portions, and wherein the first convex portion is formed corresponding to the second concave portion, and the second convex portion is formed corresponding to the first concave portion, is provided.
Abstract:
The present invention is an assembly for transporting, storing, and delivering a fuel such that a compromise to the containment of the fuel is readily recognized.
Abstract:
Spray-formed, anti-burst, leak-self-sealing coating structure applicable to the outside surface of a fuel container, and an associated application methodology. In an operative condition relative to such a surface, the coating structure includes (a) a solid, continuous-phase body of fuel-reactive, high-elastomeric material in the form of an expanse having an inner side applied to such a surface, and a spaced, outer side, (b) a field of distributed, fuel-reactive, fuel-imbiber beads embedded in and throughout the expanse of said body, generally spaced from, and centrally between, the body's inner and outer sides, but exposed to neither such side, and (c) an anti-burst fabric web having meshes formed by elongate, stretch-resistant fibers extending generally centrally within and throughout bead field. Meshes in the fabric web, and beads in the bead field, are relatively sized appropriately to permit the ready mesh-through-passage of beads during spray-formation of the coating structure.
Abstract:
A tube joint for a fuel tank includes a joint body having a tubular shape, and a barrier layer covering the inner surface of the joint body. The joint body is formed of a material which is weldable to a tank body, and the barrier layer is formed of a material which has fuel impermeability and a predetermined hardness. The barrier layer has an extension portion extending from a distal end of the joint body along an axial direction of the joint body. The extension portion includes a projecting portion which protrudes radially and outwardly of the extension portion at or adjacent to a proximal end of the extension portion such that a seal groove is formed between the projecting portion and the joint body, and a nail portion which protrudes radially and outwardly of the extension portion at or adjacent to a distal end of the extension portion.
Abstract:
A fuel tank assembly contains a supply of volatile fuel in a collapsible container having a highly compliant wall movable between an expanded configuration and a collapsed configuration so as to follow and conform closely to the supply of volatile fuel within the container as the fuel is withdrawn from and replenished in the supply, the wall having a composite construction including a fluid filler material contained within a highly flexible envelope such that the composite construction of the wall enables expansion of the container toward the expanded configuration in response to the replenishment of fuel in the container to conform to and contain the supply of volatile fuel, and enables collapse of the container in response to the withdrawal of fuel from the container, toward the collapsed configuration, with the wall continuously and closely conforming to the supply of fuel within the container as fuel is withdrawn from and replenished within the container, thereby deterring the formation of fuel vapor within the fuel tank assembly.