Abstract:
An improved vaginal speculum for photodynamic therapy of intraepithelial tissue and in particular vaginal, cervical and vulvar neoplasia utilizes a precisely and accurately positionable optic fiber through which a predetermined dose of light in the range of 620 to 700 nanometers is delivered over a controlled area which has been previously treated with photodynamic therapeutic substances. In particular, the neoplastic area has been treated with hematoporphyrin derivatives and other photosensitizers which are selectively taken into the cancerous tissue. Exposure to the appropriate wavelength laser light photoactivates the absorbed hematoporphyrins causing the release of singlet oxygen which internally oxidizes and ultimately causes cell death. The fiber optic tip from which the laser light is transmitted is precisely positioned within the body cavity at a predetermined distance from the intraepithelial neoplasia in order to obtain the appropriate spot size and location to minimize damage to healthy tissue and maximize damage to the selectively impregnated cancerous tissue.
Abstract:
A method and apparatus is disclosed for the instant intraoperative detection and biopsy of metastatic cancer using fluorescence spectroscopy. A photosensitizing agent selectively retained by cancerous tissue is administered prior to surgery. A fiberoptic probe integrated with a biopsy device illuminates the examined tissue and causes fluorescence which is recorded by a spectrograph and plotted as a spectral curve. The intensity ratio (S1/S2) for the fluorescence from the photosensitizing agent (S1) and autofluorescence (S2) for the examined tissue is compared with the intensity ratio at the same wavelengths for primary tumor and normal tissue. Tissue that displays an intensity ratio different from that of normal tissue can immediately be analyzed for the depth of tumor involvement and then excised for histological examination using the biopsy device.
Abstract:
A system is described for the delivery of light to, and/or the receiving of light from, a target located on the wall of a tortuous tube such as a blood vessel. The delivery system is generally useful for laterally delivering and receiving light for the detection and photodynamic therapy of target tissue and is particularly useful for the treatment of atherosclerosis. When certain biocompatible photoreactive molecules such as hematoporphyrin or the like are injected into a patient the molecules are selectively taken up by target tissue such as tumors or atheromatous plaque. Subsequent illumination of the target tissue activates the photoreactive molecules causing fluorescence emission from, and destruction of, the host target tissue. The preferred embodiments comprise a hollow optical waveguide terminating in a supple diffuser tip which may be inserted over an intravascular flexible guide wire. The optical delivery catheter is advanced along the guidewire until the diffuser tip reaches the target tissue. Light of a wavelength suitable to activate previously injected photoreactive molecules is delivered to the target causing selective cell lysis and/or target tissue destruction. The disclosed system is also capable of delivering laser energy for simultaneous hyperthermic generation and photodynamic therapy.
Abstract:
Aspects of disclosed embodiments relate to systems, devices and methods for treating and preventing restenosis by cross-linking collagen fibrils of the vessel wall at the intervention site. The devices described are drug-eluting devices comprising: an expandable member or a balloon; a cross-linking agent; and a photoactivating light source. Upon the inflation of the expandable member or the balloon the cross linking agent is released and photoactivated in a therapeutically effective amount for cross-linking collagen fibrils.
Abstract:
New intracorporeal radiodense medicaments and certain medical uses and methods for use of such high energy phototherapeutic medicaments for treatment of human or animal tissue are described, wherein a primary active component of such medicaments is a halogenated xanthene or halogenated xanthene derivative. The halogenated xanthenes constitute a family of potent radiosensitizers that become photoactivated upon irradiation of the treatment site with ionizing radiation. In embodiments of the present invention, such medicaments are used for treatment of a variety of conditions affecting the skin and related organs, the mouth and digestive tract and related organs, the urinary and reproductive tracts and related organs, the respiratory tract and related organs, the circulatory system and related organs, the head and neck, the endocrine and lymphoreticular systems and related organs, various other tissues, such as connective tissues and various tissue surfaces exposed during surgery, as well as various tissues exhibiting microbial or parasitic infection. In another embodiment, such medicaments are produced in various formulations including liquid, semisolid, solid or aerosol delivery vehicles.
Abstract:
New chemotherapeutic medicaments and certain medical uses and methods for use of such chemotherapeutic medicaments for treatment of disease in human or animal tissue are described, wherein a primary active component of such medicaments is a halogenated xanthene or halogenated xanthene derivative. Preferably, the halogenated xanthene is Rose Bengal or a functional derivative of Rose Bengal. The halogenated xanthenes constitute a family of useful chemotherapeutic agents that afford selective, persistent accumulation in certain tissues. In preferred embodiments, such medicaments are used for treatment of a variety of conditions affecting the skin and related organs, the mouth and digestive tract and related organs, the urinary and reproductive tracts and related organs, the respiratory tract and related organs, the circulatory system and related organs, the head and neck, the endocrine and lymphoreticular systems and related organs, various other tissues, such as connective tissues and various tissue surfaces exposed during surgery, as well as various tissues exhibiting microbial or parasitic infection. In another preferred embodiment, such medicaments are produced in various formulations useful for intracorporeal or topical administration, including in liquid, semisolid, solid or aerosol delivery vehicles.
Abstract:
A method of delivering energy to an intervertebral disc includes positioning an energy delivery device adjacent an inner wall of the disc, and shrinking the nucleus pulposus. An energy delivery element of the device is positioned adjacent a bulge in the intervertebral disc. Energy delivery is controlled based on monitored temperature. A device for delivering energy includes a catheter with a distal portion configured to be inserted into a patient and to follow a natural boundary of a patient tissue, and an energy delivery element located at the distal portion for treating tissue. The distal portion includes a braided polymeric material. The catheter has a proximal portion including a tube for transmitted torque to the distal portion. The energy delivery element is a resistive heating coil having a length, e.g., of about 1.5 cm.
Abstract:
A device is described that may be positioned at a location in an intervertebral disc for diagnosis or treatment of the disc. Treatment may include, for example, applying energy or removing material, and may decrease intradiscal pressure. Radiofrequency energy may be applied. A percutaneous method of repairing a fissure in the annulus pulposus comprises placing an energy source adjacent to the fissure and providing sufficient energy to the fissure to raise the temperature to at least about 45-70° C. and for a sufficient time to cause the collagen to weld. An intervertebral fissure also can be treated by placing a catheter with a lumen adjacent to the fissure and injecting sealant into the fissure via the catheter, thereby sealing the fissure. An intervertebral fissure additionally can be treated by providing a catheter having a distal end, a proximal end, a longitudinal axis, and an intradiscal section at the catheter's distal end on which there is at least one functional element. The next step is applying a force longitudinally to the proximal of the catheter which is sufficient to advance the intradiscal section through the nucleus pulposus and around an inner wall of an annulus fibrosus, but which force is insufficient to puncture the annulus fibrosus. Next the functional element is positioned at a selected location of the disc by advancing or retracting the catheter and optionally twisting the proximal end of the catheter. Then the functional unit treats the annular fissure. Optionally, there is an additional step of adding a substance to seal the fissure. An externally guidable intervertebral disc apparatus also is disclosed.
Abstract:
New intracorporeal photodynamic medicaments and certain medical uses and methods for use of such photodynamic medicaments for treatment of disease in human or animal tissue are described, wherein a primary active component of such medicaments is a halogenated xanthene or halogenated xanthene derivative. In preferred embodiments, such medicaments are used for treatment of a variety of conditions affecting the skin and related organs, the mouth and digestive tract and related organs, the urinary and reproductive tracts and related organs, the respiratory tract and related organs, the circulatory system and related organs, the head and neck, the endocrine and lymphoreticular systems and related organs, various other tissues, such as connective tissues and various tissue surfaces exposed during surgery, as well as various tissues exhibiting microbial or parasitic infection. In another preferred embodiment, such medicaments are produced in various formulations including liquid, semisolid, solid or aerosol delivery vehicles.
Abstract:
A catheter for delivering energy to a surgical site is disclosed. The catheter includes at a proximal end a handle and at a distal end a probe. The catheter includes at least one energy delivery device and an activation element. The activation element is located at the distal end of the catheter, to transition the probe from a linear to a multi-dimensional shape, within the surgical site. In another embodiment of the invention the catheter includes an energy delivery element, a tip and a blade. The energy delivery element is located at the distal end of the catheter to deliver energy to portions of the intervertebral disc. The blade is positioned within a first lumen of the tip and is extensible beyond the tip, to cut selected portions within the intervertebral disc. In another embodiment of the invention a catheter includes both energy and material transfer elements and an interface on the handle thereof. The interface couples the energy delivery element and the material transfer element to external devices for energy and material transfer to and from the intervertebral disc.