Abstract:
A device for delivering phototherapeutic light to uniformly illuminate a tissue surface. The device is a bowl-shaped shell with a more-or-less parabolic profile and having an open end and an apex. The inner surface of the shell is adapted to diffusely reflect light with very low absorption by the shell material. A light output end of a fiber optic is introduced into the interior of the shell through a fiber optic port in the shell wall near the apex. The light output end of the fiber is positioned such that light emanating therefrom impinges upon the inner surface of the shell. The shape of the shell causes greater than 60 percent of the light emanating from the fiber to intercept the shell's surface and be diffusely reflected. The diffusely reflected light may then undergo further diffuse reflection within the shell prior to reaching the treatment surface adjacent to the open end of the shell to provide more uniform illumination of the treatment surface than the fiber could otherwise provide. A highly reflective coating is applied to the outer surface of the shell to prevent loss of treatment light from the device. In addition, treatment light which is reflected from the tissue surface and normally lost is captured by the interior surface of the shell and re-reflected to reenter the tissue surface. Thus, little or no treatment light is lost due to reflection or scattering from tissue providing improved efficiency. The shell preferably includes a laterally extending flange around a portion of the open end which can be affixed to the tissue surface thereby preventing relative motion between the illuminator and tissue surface during treatment enabling accurate dosimetry.
Abstract:
Photodynamic Therapy (PDT) is used as an adjunctive or stand alone procedure for the treatment of cardiovascular disease. When used as an adjunctive therapy to Percutaneous Transluminal Coronary Angioplasty, laser angioplasty, atherectomy, stenting, or any other interventional or surgical procedure, it has been found that the treatment timing is critical to the success of the combined therapies. A photosensitizer is administered prior to the surgical or interventional procedure and then readministered after the procedure to maintain the photosensitizer concentration level in the atheromatous plaque and smooth muscle cells in the vicinity of the lesion for a period of about 5-18 days, the period in which cell proliferation can occur. The photosensitizer inhibits smooth muscle cell proliferation and, thus, minimizes or eliminates the possibility of re-stenosis. The photosensitizer is then illuminated at the end of this period, thereby lysing the atheromatous plaque and smooth muscles. The photosensitizer inhibits atheromatic smooth muscle cell proliferation.
Abstract:
A method of identifying vasculature including the steps of introducing an indicator in a peripheral vessel, and advancing a portion of the indicator into an internal vessel to identify said vessel. A catheter for identifying vasculature is also disclosed. The catheter is adapted to be introduced into a peripheral vessel and a portion thereof advanced into an internal vessel. The catheter includes a light delivery portion at a distal end thereof and an expandable member located proximal to the light delivery portion.
Abstract:
The present invention is directed to intraluminal shunt devices and methods of their use for delivering a drug or other fluid to a target vessel of a patient while also maintaining perfusion of blood through the vessel to reduce ischemia downstream of the vessel. The intraluminal shunt devices may generally include a primary elongate tubular member that is sized and dimensioned to be inserted into the target vessel, such as the right coronary artery. The primary tubular member includes at least one inner lumen which permits blood perfusion through the vessel. At least one secondary tubular member is provided which is in fluid communication with the primary tubular member. The secondary tubular member may be configured for drug or fluid delivery through the primary tubular member and into the vessel in either an anterograde or retrograde direction. Methods of using shunt devices are also described which generally include making an incision in the target vessel, inserting the proximal and distal ends of the primary tubular member into the target vessel via the incision, and selectively delivering the drug or fluid in either an anterograde or retrograde direction through the primary tubular member and into the vessel.
Abstract:
A broad class of photosensitive compounds having enhanced in vivo target tissue selectivity and versatility in photodynamic therapy. Many furocoumarin compounds, such as psoralens, exhibit cytostatic activity when photoactivated but exhibit little in vivo specificity for selectively accumulating in any particular target tissue such as atheromatous plaques. Reactive Oxygen Producing Photosensitizers ("ROPPs") are photoactivatable compounds having an affinity for hyperproliferating cells (such as atheromatous plaque cells), which when photoactivated, produce cytotoxic reaction products. The photoactivity of a ROPP, such as a porphyrin, may be reduced by metalating the porphyrin while the selective affinity of the metalized ROPP for hyperproliferating tissue remains substantially unchanged. By linking a furocoumarin compound to a ROPP to form a F-ROPP, the cytostatic properties of the furocoumarin portion of the F-ROPP can be exploited while the selective affinity of the ROPP portion of the compound for hyperproliferating cells such as atheromatous plaque provides enhanced tissue selectivity without cytotoxicity. In vivo, certain F-ROPPs may be forced to selectively accumulate in a target tissue by illuminating only the target tissue with light having a wavelength operable for photoactivating the F portion of the F-ROPP thereby causing the F-ROPP to either form a monoadduct with or crosslink the cellular DNA in the target tissue. Light of a second wavelength can then be delivered to the target tissue to photoactivate the ROPP portion causing further interference with cellular activity.
Abstract:
Cardiovascular disease is the leading cause of death in the United States. Interpreting the relative danger of a lesion within the vasculature is limited by a lack of information on the composition of lesion. It is believed that a lesion which is high in lipids is more prone to rupture followed by thrombosis than a stable highly calcific, fibrotic, high grade stenosis. To address this recent hypothesis, a method of diagnosing and treating the most problematic vascular lesions is presented. The method employs the selective uptake of a lipophilic fluorescent compound by a lesion followed by the application of excitation light to the fluorescent compound-ladened lesion causing the fluorescent compound to emit fluorescence light. The intensity of the fluorescence light indicates the lipid content and/or the fibrous cap thickness, thus providing information on the potential danger of the lesion and enabling the clinician to treat the lesion in a manner which provides the patient with the best chance for clinical success.
Abstract:
A light diffusing guidewire which has the ability to deliver light to luminal surfaces such as blood vessels for the diagnosis and treatment of medical conditions. The device can be used either in conjunction with another outer catheter such as a balloon catheter or as a stand-alone device. The light diffusing guidewire can be used as a standard guidewire for directing the placement of another catheter. The guidewire has an elongate body portion having a proximal end and a distal (invasive) end. A portion of the body portion transmits light from the proximal end to a light diffusing element within the body portion near the distal end. The guidewire has a floppy tip distal to the light diffusing element and is rigid and highly torqueable proximal to the diffusing element. The outer diameter of the guidewire is similar to that of standard interventional guidewires such as angioplasty guidewires, i.e. 0.014"-0.038". The light diffusing guidewire has a low profile which enables delivery of illuminating diagnostic or treatment light to the walls of even the most distal, small-diameter vessels.
Abstract:
A flexible tip for a medical catheter suitable for the transmission of light and dimensioned to pass through extremely small tubular members is described. The flexible tip, preferably made of optically transparent silicone elastomer, is affixed to the terminal end of a conventional optical fiber. In a preferred embodiment, the flexible tip comprises a central silicone core surrounded by a cladding having an index of refraction less than that of the core, permitting internal reflection. The flexible tip is provided with an outer jacket which serves two purposes: a) it provides structural integrity for the tip, and b) it reinforces the union between the flexible tip and the optical fiber to which it is abutted. The tip enables the delivery of a comparable amount of light as a large glass fiber of equal core diameter but possesses much greater flexibility. The tip has the flexibility to be able to enter tortuous tubular members while retaining the light transmitting capabilities of relatively inflexible glass optical waveguides of the same diameter.
Abstract:
A microlens assembly for use with an optical fiber or fiber bundle that requires no crimping or mechanical distortion of the optical fiber. The microlens assembly has a front lens mounting portion and a rear portion. The rear portion is a cylindrical tube which is bonded to the sheath and cladding of the optical fiber or fiber bundle by means of suitable adhesive. The front lens mounting portion which houses the output lens is also tubular, having an inner diameter greater than the outer diameter of the rear portion. The front lens mounting portion is slid over the rear portion until the desired distribution of light emanating from the lens is achieved. The front lens mounting portion is then locked into position by bonding it to the rear portion by means of an appropriate adhesive. The adhesives are stable at high temperature and have an index of refractions suitable for preventing refractive loss of light from the lateral walls of the fiber core. In one embodiment, the cylindrical space in the microlens assembly between the output lens and the tip of the optical fiber or fiber bundle is filled with an optically transparent fluid or elastomer such as silicone. The filling excludes body fluids from entering the microlens assembly.
Abstract:
An intra-vascular optical radial imaging system comprising an intra-vascular guidewire-compatible catheter, a source of illumination and a synchronous fluorescence detector. The catheter is inserted into a blood vessel until the tip is adjacent to a section of vessel to be imaged. A narrow beam of light emanating radially from an aperture underlying the segment to be imaged repetitively illuminates segments of the wall of the vessel in a scanning or sweeping manner with the light of a wavelength that induces fluorescence in molecules in the tissue. Fluorescence from molecules in the illuminated tissue enters the catheter through the aperture and is conveyed to a spectral analyzer. Properties of the fluorescence signal are characteristic of the particular tissue and may be used to differentiate healthy tissue from atherosclerotic plaque. The method yields not only the longitudinal position of a lesion along a vessel but also the cylindrical coordinates by determining the circular or angular position of the lesion on the interior wall of the vessel.