Abstract:
Cell counts that distinguish between live and dead cells while providing an accurate count of the total of live and dead cells are obtained by the use of a vital stain in conjunction with illumination of the cell population and the taking of light images at different wavelengths, one which is not absorbed by the stain and one that is absorbed by the stain. Masking and inaccuracies in the counting of dead cells is thereby avoided.
Abstract:
A differential interference contrast (DIC) determination device and method utilizes an illumination source, a layer having a pair of two apertures that receive illumination from the illumination source, and a photodetector to receive Young's interference from the illumination passing through the pair of two apertures. In addition, a surface wave assisted optofluidic microscope and method utilize an illumination source, a fluid channel having a layer with at least one aperture as a surface, and a photodetector that receives a signal based on the illumination passing through the aperture. The layer is corrugated (e.g., via fabrication) and parameters of the corrugation optimize the signal received on the photodetector.
Abstract:
Embodiments of the present invention relate to a surface wave enabled darkfield aperture structure comprising an aperture layer, a aperture in the aperture layer and a plurality of grooves around the aperture. The aperture layer has a first and second surface. The plurality of grooves is in the first surface. A surface wave propagates along at least the first surface. The plurality of grooves is configured to generate a darkfield at the aperture by modifying the surface wave to cancel out direct transmission of a uniform incident light field received by the aperture.
Abstract:
Embodiments of the present invention relate to a surface wave enabled darkfield aperture structure comprising an aperture layer, a aperture in the aperture layer and a plurality of grooves around the aperture. The aperture layer has a first and second surface. The plurality of grooves is in the first surface. A surface wave propagates along at least the first surface. The plurality of grooves is configured to generate a darkfield at the aperture by modifying the surface wave to cancel out direct transmission of a uniform incident light field received by the aperture.
Abstract:
Systems and methods for performing cytometry using a linear light sensor. An illumination field, a line scanned by the linear light sensor, or both are swept across a cell to be imaged. Relative motion between the cell and the swept illumination may be created using a movable optical component or components, by adhering cells to a plate and transporting the plate or by other techniques.
Abstract:
Biological cells in a liquid suspension are counted in an automated cell counter that focuses an image of the suspension on a digital imaging sensor that contains at least 4,000,000 pixels each having an area of 2×2 μm or less and that images a field of view of at least 3 mm2. The sensor enables the counter to compress the optical components into an optical path of less than 20 cm in height when arranged vertically with no changes in direction of the optical path as a whole, and the entire instrument has a footprint of less than 300 cm2. Activation of the light source, automated focusing of the sensor image, and digital cell counting are all initiated by the simple insertion of the sample holder into the instrument. The suspension is placed in a sample chamber in the form of a slide that is shaped to ensure proper orientation of the slide in the cell counter.
Abstract:
A flow cytometry system includes a flow element through which a cell is transported in a flowing fluid. The flow element includes a bore bounded by a wall. A light source is configured to illuminate the cell. An optical system receives light emanating from the cell and directs at least some of the received light to a light sensor. The optical system includes a numerical-aperture-increasing lens at a wall of the flow element. At least some of the received light passes through the numerical-aperture-increasing lens. The flow cytometry system may also include a beam splitter that directs two wavelength bands of the emanating light such that light in two wavelength band preferentially reach different sensing locations via different paths. The system may also include an optical element placed in one of the paths, shifting a focal location of the affected path to compensate for chromatic aberration of the numerical-aperture-increasing lens.
Abstract:
A differential interference contrast (DIC) determination device and method utilizes an illumination source, a layer having a pair of two apertures that receive illumination from the illumination source, and a photodetector to receive Young's interference from the illumination passing through the pair of two apertures. In addition, a surface wave assisted optofluidic microscope and method utilize an illumination source, a fluid channel having a layer with at least one aperture as a surface, and a photodetector that receives a signal based on the illumination passing through the aperture. The layer is corrugated (e.g., via fabrication) and parameters of the corrugation optimize the signal received on the photodetector.
Abstract:
A differential interference contrast (DIC) determination device and method utilizes an illumination source, a layer having a pair of two apertures that receive illumination from the illumination source, and a photodetector to receive Young's interference from the illumination passing through the pair of two apertures. In addition, a surface plasmon assisted optofluidic microscope and method utilize an illumination source, a fluid channel having a layer with at least one aperture as a surface, and a photodetector that receives a signal based on the illumination passing through the aperture. The layer is corrugated (e.g., via fabrication) and parameters of the corrugation optimize the signal received on the photodetector.
Abstract:
Optical coherence microscope (OCM) systems and methods that combine the capability of a confocal microscope to obtain high resolution images and the ability of low coherence interferometer (LCI) to obtain high-accuracy phase and amplitude information of samples. The OCM system of the present invention uses a homodyne approach and obtains complete quadrature results of amplitude and phase instantaneously without optical or electronic modulation as in conventional OCT systems. Because the OCM methods of the present invention use a homodyne approach for signal extraction, there is no minimum pixel dwell time associated with each pixel acquisition, and accurate interference phase and amplitude information is extracted.