Abstract:
A control circuit of a thin film transistor, comprising: a substrate; a silicon nitride layer disposed on the substrate; a silicon dioxide layer disposed on the silicon nitride layer; a light shielding layer disposed inside the silicon nitride layer, which comprising a first light shielding region and a second light shielding region; at least one N type metal oxide semiconductor disposed on the silicon dioxide layer at a position corresponding to the first light shielding region; at least one P type metal oxide semiconductor disposed on the silicon dioxide layer at a position corresponding to the second light shielding region; each of the N type metal oxide semiconductor and the P type metal oxide semiconductor has a gate electrode layer, a first control signal received by voltage pulses of the gate electrode layer synchronized with a second control signal received by the light shielding layer in voltage variation.
Abstract:
A self-capacitive touch panel structure includes a touch detection chip and multiple self-capacitance electrodes which are isolated with each other and arranged as a matrix. Each self-capacitance electrode is connected with the touch detection chip through a connection line, each self-capacitance electrode is connected with a corresponding connection line through at least one via hole. Wherein, for a same column of the multiple self-capacitance electrodes and according to a sequence of gradually far away from the touch detection chip, a cross-sectional area of a connection line connected with a following self-capacitance electrode is larger than a cross-sectional area of a connection line connected with a previous self-capacitance electrode such that resistance values of the connection lines connected between the self-capacitance electrodes and the touch detection chip are approximately equal. An in-cell touch panel and a liquid crystal display including above structure are also disclosed.
Abstract:
A self-capacitive touch panel structure includes a touch detection chip and multiple self-capacitance electrodes arranged as a matrix and isolated with each other. Each self-capacitance electrode connected with the touch detection chip through a connection line. Each self-capacitance electrode electrically connected with a corresponding connection line through at least one via hole. A group of connection lines connected with a same column of the multiple self-capacitance electrodes are divided into an odd number group and an even number group. The connection lines in the odd number group are sequentially connected with a terminal of a corresponding self-capacitance electrode of the same column of the self-capacitance electrodes. The connection lines in the even number group are sequentially connected with a terminal of a corresponding self-capacitance electrode of the same column of the self-capacitance electrodes. An in-cell touch panel and a liquid crystal display including above structure are also disclosed.
Abstract:
An embedded touch panel and the manufacturing method thereof are disclosed. The embedded touch panel includes a TFT substrate, a liquid crystal layer, a color filter, a polarizer and a glass cover arranged in sequence, wherein the polarizer is a non-conductive polarizer. A transparent conductive layer is arranged between the polarizer and the color filter. The TFT substrate includes at least one grounded pin, and the transparent conductive layer electrically connects with the grounded pin on the TFT substrate. In view of the above, the transparent conductive layer and the non-conductive polarizer may replace the high impedance polarizer of the embedded touch panel so as to greatly reduce the manufacturing cost. In addition, by bonding the frame of the polarizer, the bubble issue occurring when bonding the polarizer may be avoided.
Abstract:
The present invention provides a touch control structure, comprising a touch control zone, and the touch control zone comprises touch control units and first lead wires corresponding to the touch control units, and the touch control units are arranged in array having a plurality of column of the touch control units, and the touch control units of each column are aligned in spaces from top to bottom in the touch control structure, and the first lead wires sequentially penetrate the touch control units in each column from top to bottom in the touch control structure, and the first lead wire is electrically coupled to one touch control unit, and is disconnected with the next touch control unit, which is adjacent to the touch control unit in the same column and close to the top of the touch control structure.
Abstract:
The present invention provides a thin film transistor array substrate and a liquid crystal display panel. The thin film transistor array substrate comprises: a substrate; a light shielding layer, located at a middle part on a surface of the substrate; a buffer layer, covering the light shielding layer; a Low Temperature Poly-silicon layer, being located on the buffer layer, and corresponding to the light shielding layer; an isolation layer, covering the Low Temperature Poly-silicon layer, and the isolation layer comprises a through hole, wherein a width of the through hole is smaller than a width of the light shielding layer; a metal layer, located on the isolation layer, and the metal layer is connected with the Low Temperature Poly-silicon layer via the through hole. The thin film transistor array substrate and the liquid crystal display panel have a higher aperture ratio.
Abstract:
The present disclosure relates to an array substrate and the manufacturing method thereof. The array substrate includes a glass substrate. The shading metal layer and the buffering layer are formed on the glass substrate in sequence. The TFT layer is formed on the buffering layer, and the TFT is arranged above the shading metal layer. The insulation layer and the organic layer are formed on the TFT layer in sequence. In addition, the pixel electrode layer connects to the source/drain of the TFT via the first through hole. The touch electrode layer connects to the shading metal layer via the second through hole. The passivation layer is configured between the pixel electrode layer and the touch electrode layer. In this way, the manufacturing process is simplified, and the coupling capacitance between the touch electrode and the signal line may be effectively reduced.
Abstract:
The present invention proposes a TFT, an array substrate, and a method of forming a TFT. The TFT includes a substrate, a buffer layer, a patterned poly-si layer, an isolation layer, a gate layer, and a source/drain pattern layer. The poly-si layer includes a heavily doped source and a heavily doped drain, and a channel. The gate layer includes a first gate area and a second gate area. The source/drain pattern layer includes a source pattern, a drain pattern and a bridge pattern, with the source pattern electrically connecting the heavily doped source, the drain pattern electrically connecting the heavily doped drain, and one end of the bridge pattern connecting the first gate area and the second gate area. The driving ability of the present inventive TFT is enhanced without affecting the leakage current.