Abstract:
To provide an electrochromic compound represented by the following general formula (1) where X1 and X2 are each independently a carbon atom or a nitrogen atom, R1, R2 and R3 are each independently a halogen atom, a substituted or unsubstituted alkyl group, or a substituted or unsubstituted alkoxy group, x is an integer selected from 0 through 3, y and z are each independently an integer selected from 0 through 4, and at least one of L1 and L2 is a monovalent functional group bonded to a nitrogen atom of a pyridinium ring directly, or via a divalent substituent.
Abstract:
To provide an electrochromic device, including a laminated body, which includes: at least one support; a first electrode layer on the support; an electrochromic layer on the first electrode layer; a second electrode layer disposed to face the first electrode layer; and an electrolyte layer, which fills between the first electrode layer and the second electrode layer, and is on the electrochromic layer, the at least one support including a resin substrate, and the laminated body having a desired curve formed by thermoforming.
Abstract:
An electrochromic element is provided. The electrochromic element includes a first electrode, a second electrode, an electrolyte disposed between the first electrode and the second electrode, a first layer overlying the first electrode, and a second layer overlying the second electrode. The first layer contains an oxidizable color-developing electrochromic compound. The second layer contains a compound having the following formula (1): wherein each of R1 to R5 independently represents a hydrogen atom, a halogen atom, or a monovalent organic group, and at least one of R1 to R5 has a functional group directly or indirectly bindable to hydroxyl group.
Abstract:
An interposer substrate of the present invention includes a planar substrate, and through hole wiring that is formed by filling a through hole that connects together a first main surface and a second main surface of this substrate with a conductor. When the through hole is viewed in a vertical cross-sectional view of the substrate, the through hole has a trapezoidal shape whose side walls are formed by an inside surface of the through hole, and two side faces of the trapezoid are not parallel to each other. The two side faces of the trapezoid are both inclined towards the same side relative to two perpendicular lines that are perpendicular to the first main surface or the second main surface at two apex points forming a top face or a bottom face of the trapezoid.
Abstract:
The compressor includes a first constituent element and a first slider. The first constituent element is capable of being laser welded. The first slider is composed of cast iron capable of being laser welded and having a carbon content of from 2.0 wt % or more to 2.7 wt % or less. This first slider is joined to the first constituent element by laser welding without using a filler.
Abstract:
A through wiring substrate includes a substrate having a first face and a second face; and a through-wire formed by filling, or forming a film of, an electrically-conductive substance into a through-hole, which penetrates between the first face and the second face. The through-hole has a bend part comprising an inner peripheral part that is curved in a recessed shape and an outer peripheral part that is curved in a protruding shape, in a longitudinal cross-section of the through-hole, and at least the inner peripheral part is formed in a circular arc shape in the longitudinal cross-section.
Abstract:
A through wiring substrate includes a substrate including a first face and a second face, and a plurality of through-wires formed by filling, or forming a film of, an electrically-conductive substance in through-holes that penetrate between the first face and the second face. The through-wires are separated from each other, and, include at least one overlap section in a plan view of the substrate.
Abstract:
A positive electrode active material of a nonaqueous electrolyte secondary battery according to an embodiment of the invention includes lithium cobalt compound oxide in which at least zirconium and magnesium are added, and lithium nickel manganese compound oxide having a layered structure. The lithium cobalt compound oxide contains at least two types of zirconium- and magnesium-added lithium cobalt compound oxides having zirconium added amounts different from each other. The charging potential of the positive electrode active material is more than 4.3 V and 4.6 V or less versus lithium. With such a constitution, a nonaqueous electrolyte secondary battery using a plurality of positive electrode active materials having different physical properties which not only is capable of being charged at a high charging voltage of more than 4.3 V and 4.6 V or less versus lithium, but also has excellent charging/discharging cycle property and excellent charged storage properties without lowering the battery capacity.
Abstract:
A reversible thermosensitive coloring material which can reversibly achieve a relatively colored state and a relatively discolored state depending on a temperature to which the coloring material is heated or a cooling speed at which the coloring material is cooled after heated. The coloring material including an electron donating coloring agent; an electron accepting color developer configured to color the coloring agent; and a compound having a Zwitter ion in which a total of charges in a molecule of the compound is zero. A reversible thermosensitive recording material including a substrate and a reversible thermosensitive recording layer, which is located overlying the substrate and which includes the reversible thermosensitive coloring material.
Abstract:
An electrochromic element including: a first electrode; a second electrode that is opposed to and apart from the first electrode; and an electrolyte that is between the first electrode and the second electrode, wherein the first electrode includes a polymerized product of an electrochromic composition that includes a radical-polymerizable compound including a triarylamine backbone, and wherein the second electrode includes a compound represented by General Formula (I) where R1 and R2 each denote a hydrogen atom, an aryl group including 14 or less carbon atoms, a heteroaryl group including 14 or less carbon atoms, a branched alkyl group including 10 or less carbon atoms, an alkenyl group including 10 or less carbon atoms, a cycloalkyl group including 10 or less carbon atoms, or a functional group that is capable of binding to a hydroxyl group; n and m each denote 0 or an integer of from 1 through 10; and X− denotes a charge-neutralizing ion.