摘要:
An electrochromic device according to an embodiment comprises a transparent conductive layer, an ion storage layer, an electrolyte layer, an electrochromic layer, and a reflective layer or a transparent conductive layer, wherein the ion storage layer includes an iridium atom and a tantalum atom, wherein the electrolyte layer includes a tantalum atom, wherein the electrochromic layer includes a tungsten atom, wherein at least one of the tungsten atom of the electrochromic layer and the iridium atom and the tantalum atom of the ion storage layer is hydrogenated, wherein the reflective layer is non-porous.
摘要:
To provide an electrochromic display element, which contains: a display substrate; a display electrode; an electrochromic layer provided in contact with the display electrode; a counter substrate provided to face the display substrate; a counter electrode; a charge retention layer provided in contact with the counter electrode; and an electrolyte layer filling between the display substrate and the counter substrate, wherein the electrochromic layer contains titanium oxide particles, and metal hydroxide is dispersed on surfaces and in inner parts of the titanium oxide particles.
摘要:
A memory device may include an access transistor, and a memory cell configured to store an item of information. The memory cell may include first and second electrodes configured to have different optoelectronic states corresponding respectively to two values of the item of information, and to switch between the different optoelectronic states based upon a control signal external to the memory cell, the different optoelectronic states being naturally stable in an absence of the control signal. The memory cell may also include a solid electrolyte between the first and second electrodes.
摘要:
An electrochromic device and a method for manufacturing same, which device has at least a pair of opposed transparent electroconductive layers, a first transparent ion conductive layer provided between the pair of opposed electroconductive layers, a second transparent ion conductive layer adjacent to the first ion conductive layer, a reductive coloring electrochromic layer adjacent to the second ion conductive layer, wherein the first transparent ion conductive layer is formed in an atmosphere containing water vapor and the second transparent ion conductive layer is formed in an atmosphere containing oxygen. Thereby an electrochromic device can be provided, which device exhibits excellent durability when being driven at a high contrast ratio and high resistance to such environments as high temperature and humidity.
摘要:
A memory device may include an access transistor, and a memory cell configured to store an item of information. The memory cell may include first and second electrodes configured to have different optoelectronic states corresponding respectively to two values of the item of information, and to switch between the different optoelectronic states based upon a control signal external to the memory cell, the different optoelectronic states being naturally stable in an absence of the control signal. The memory cell may also include a solid electrolyte between the first and second electrodes.
摘要:
An electrochromic system comprising a layer of anode electrochromic material with all iridium oxide bass formatted by intensiostatic cycling in a liquid medium comprising a salt of a cation, excluding the proton, that can be inserted in said anode electrochromic material of an alkaline metal.
摘要:
A method for producing an electrochromic device, comprises the steps of:(a) preparing a 5-layered laminate structure consisting of:A: electrode layer;B: reductive coloring electrochromic layer;C: ionic conductive layer;D.sub.0 : dispersion layer consisting of metallic iridium and a dispersion medium; andE: electrode layer; wherein at least one of the electrode layers A, E is transparent; and(b) applying an AC voltage between the electrode layers A and E in a gas atmosphere containing oxygen or water vapor, thereby converting the metallic iridium in the layer D.sub.0 into oxide or hydroxide.
摘要:
Electrochromic devices based on electrochromic iridium oxide electrodes are disclosed. These electrodes are iridium oxide entities produced by vacuum deposition techniques such as by sputtering from an iridium target in the presence of an oxygen atmosphere. All solid state electrochromic devices utilizing such electrodes are possible.
摘要:
A touch glasses-free grating 3D display device and manufacturing and control methods thereof The touch glasses-free grating 3D display device includes a display panel and an electrochromic 3D glasses-free grating disposed on the display panel. The electrochromic 3D glasses-free grating includes a plurality of mutually parallel first grating electrodes, a plurality of mutually parallel second grating electrodes and an electrochromic material disposed between the plurality of mutually parallel first grating electrodes and the plurality of mutually parallel second grating electrodes. Both the plurality of first grating electrodes and the plurality of second grating electrodes are transparent conductive electrodes. The display panel is provided with or includes a plurality of touch electrodes which are intercrossed with and insulated from the plurality of first grating electrodes and the plurality of second grating electrodes. The first grating electrodes and the second grating electrodes not only can apply 3D driving voltage signals but also can apply touch driving signals or output touch sensing signals.
摘要:
A memory device may include an access transistor, and a memory cell configured to store an item of information. The memory cell may include first and second electrodes configured to have different optoelectronic states corresponding respectively to two values of the item of information, and to switch between the different optoelectronic states based upon a control signal external to the memory cell, the different optoelectronic states being naturally stable in an absence of the control signal. The memory cell may also include a solid electrolyte between the first and second electrodes.