Abstract:
A buffer circuit is provided which is insensitive to a duty distortion regardless of the change of operation environment. The buffer circuit includes a current mode logic buffer and a differential-to-single-ended converter. The differential-to-single-ended converter receives first and second differential output signals to generate a single ended output signal and is configured so that an internal control node of the differential-to-single-ended converter is controlled in a negative feedback method to maintain a constant duty ratio of the single ended output signal regardless of the change of operation environment. According to some embodiments, a duty distortion of the single ended output signal due to the change of operation environment such as a process, a voltage, a temperature, etc. is reduced or minimized and thereby performance of the buffer circuit is improved and operation reliability is improved.
Abstract:
A method of operating memory devices disposed in different ranks of a multi-rank memory device and sharing a signal line includes receiving, in all of the memory devices included in the multi-rank memory device, on-die termination (ODT) state information of the signal line. The method further includes storing, in each of the memory devices of the multi-rank memory device, the ODT state information of the signal line in a mode register. The method further includes generating, in each of the memory devices of the multi-rank memory device, a control signal based on the ODT state information of the signal line stored in the mode register. The method further includes changing, in each of the memory devices of the multi-rank memory device, an ODT setting of the signal line in response to the control signal.
Abstract:
A memory device includes a clock receiver configured to receive, from a memory controller, a write clock that is used to receive write data during a data write operation, a duty monitor configured to generate first monitoring information by monitoring a duty of the write clock, and a duty adjuster configured to adjust the duty of the write clock in response to a duty control signal and output an adjusted write clock. The memory device provides the first monitoring information to the memory controller, and receives the duty control signal, generated using the first monitoring information, from the memory controller.
Abstract:
A semiconductor memory device includes a memory cell array, an error correction code (ECC) circuit, a fault address register, a scrubbing control circuit and a control logic circuit. The memory cell array includes memory cell rows. The scrubbing control circuit generates scrubbing addresses based on refresh operations performed on the memory cell array. The control logic circuit controls the ECC circuit such that the ECC circuit performs an error detection operation on a plurality of sub-pages in a first memory cell row to count a number of error occurrences, and determines whether to correct a codeword in which an error is detected based on the number of error occurrences. An uncorrected or corrected codeword is written back, and a row address of the first memory cell row may be stored in the fault address register as a row fault address based on the number of error occurrences.
Abstract:
A data alignment circuit of a semiconductor memory device including: a data sampling circuit configured to receive a data sequence and an internal data strobe signal, wherein the data sampling circuit samples the data sequence based on the internal data strobe signal to generate first and second data sequences; a division circuit configured to receive a clock signal and the internal data strobe signal, divide the clock signal to produce a divided clock signal and output an alignment control signal by sampling the divided clock signal based on the internal data strobe signal; and a data alignment block configured to receive the first and second data sequences, and the alignment control signal, and align the first and second data sequences in parallel to output internal data.
Abstract:
A semiconductor device is provided. The semiconductor device includes a driver circuit, a dummy circuit, and a control unit. The driver circuit is configured to provide a termination resistor at a signal transmission path. The driver circuit includes a plurality of resistors having at least two different types of resistor. The dummy circuit is electrically connected to the driver circuit and is configured to compensate for a mismatch between the at least two different types of resistors. The control unit is configured to control the dummy circuit, based on a result obtained by detecting the mismatch.
Abstract:
A semiconductor device is provided. The semiconductor device includes a driver circuit, a dummy circuit, and a control unit. The driver circuit is configured to provide a termination resistor at a signal transmission path. The driver circuit includes a plurality of resistors having at least two different types of resistor. The dummy circuit is electrically connected to the driver circuit and is configured to compensate for a mismatch between the at least two different types of resistors. The control unit is configured to control the dummy circuit, based on a result obtained by detecting the mismatch.
Abstract:
A memory device includes a clock receiver configured to receive, from a memory controller, a write clock that is used to receive write data during a data write operation, a duty monitor configured to generate first monitoring information by monitoring a duty of the write clock, and a duty adjuster configured to adjust the duty of the write clock in response to a duty control signal and output an adjusted write clock. The memory device provides the first monitoring information to the memory controller, and receives the duty control signal, generated using the first monitoring information, from the memory controller.
Abstract:
A method of operating a memory device is provided. The method includes: receiving a first command from a controller; activating a page of a memory cell array based on the first command; reading data of the activated page; detecting an error from the read data; correcting the detected error to generate error correction data; writing back the error correction data to the activated page in based on the detected error being a single-bit error; and blocking write-back of the error correction data to the activated page based on the detected error being a multi-bit error.
Abstract:
A memory device includes a driver that drives a data line connected with an external device, an internal ZQ manager that generates an internal ZQ start signal, a selector that selects one of the internal ZQ start signal and a ZQ start command from the external device, based on a ZQ mode, a ZQ calibration engine that generates a ZQ code by performing ZQ calibration in response to a selection result of the selector, and a ZQ code register that loads the ZQ code onto the driver in response to a ZQ calibration command from the external device.