Abstract:
A nonvolatile memory device is provided. A nonvolatile memory device comprises a word line, a bit line, a memory cell array including a first memory cell at an intersection region between the word line and the bit line, a word line voltage generating circuitry configured to generate a program voltage, the program voltage to be provided to the word line, a row decoder circuitry configured to receive the program voltage from the word line voltage generating circuitry and configured to provide the program voltage to the word line, a verification circuitry configured to generate a verification signal in response to verifying a success or a failure of programming of the first memory cell, and a control circuitry configured to apply the program voltage to the first memory cell in response to the verification signal, and configured to cut off the program voltage in response to the verification signal.
Abstract:
A semiconductor device includes a substrate, a gate structure on the substrate, a first etch stop layer, a second etch stop layer, and an interlayer insulation layer that are stacked on the gate structure, and a contact plug penetrating the interlayer insulation layer, the second etch stop layer, and the first etch stop layer and contacting a sidewall of the gate structure. The contact plug includes a lower portion having a first width and an upper portion having a second width. A lower surface of the contact plug has a stepped shape.
Abstract:
In a method of manufacturing an MRAM device, a lower electrode and a preliminary first free layer pattern sequentially stacked are formed on a substrate. An upper portion of the preliminary first free layer pattern is removed to form a first free layer pattern. A second free layer and a tunnel barrier layer are sequentially formed on the first free layer pattern. The second free layer is partially oxidized to form a second free layer pattern. A fixed layer structure is formed on the tunnel barrier layer.
Abstract:
A method of manufacturing magnetoresistive random access memory (MRAM) device includes forming first and second patterns on a substrate in an alternating and repeating arrangement, forming a first capping layer on top surfaces of the first and second patterns, and removing first portions of the first capping layer and a portion of the second patterns thereunder to form first openings exposing the substrate. The method further includes forming source lines filling lower portions of the first openings, respectively, forming second capping layer patterns filling upper portions of the first openings, respectively, and removing second portions of the first capping layer and a portion of the second patterns thereunder to form second openings exposing the substrate. Then, contact plugs and pad layers are integrally formed and sequentially stacked on the substrate to fill the second openings.