Abstract:
A liquid crystal display is provided. A passivation layer is disposed on a substrate. A first microcavity is disposed on the passivation layer. A second microcavity is disposed on the passivation layer and spaced apart from the first microcavity at a first spacing and along a first direction. A fixing member is disposed between the first microcavity and the second microcavity. A roof layer is disposed on the first and the second microcavities and the fixing member, wherein the first and the second microcavities include liquid crystal molecules.
Abstract:
A manufacturing method of a liquid crystal display includes forming a sacrificial layer on a liquid crystal panel, forming an etch stop layer on the sacrificial layer, forming a photo resist pattern on the etch stop layer, completing the etch stop layer using the photo resist pattern as a mask, ashing the photo resist pattern and the sacrificial layer by using the completed etch stop layer as a mask, forming a microcavity by removing a portion of the sacrificial layer and forming a liquid crystal layer in the microcavity.
Abstract:
A liquid crystal display is provided that includes: a substrate; a thin film transistor disposed on the substrate; a protection layer disposed on the thin film transistor; a first electrode and a second electrode disposed on the protection layer; an alignment layer disposed on the second electrode; and a roof layer facing the second electrode, wherein a plurality of microcavities are formed between the second electrode and the roof layer, the microcavities include a liquid crystal material, and the alignment layer includes a photo-alignment material.
Abstract:
A display device and a method of manufacturing the display device improve reliability by preventing contact between a color filter, a light blocking member and a liquid crystal layer. The display device includes: a substrate including pixel areas; a thin film transistor formed on the substrate; a pixel electrode connected to the thin film transistor and formed in the pixel areas; a roof layer formed on the pixel electrode; microcavities interposed between the pixel electrode and the roof layer; an injection hole formed in the roof layer, the injection hole configured to expose at least a portion of the microcavities; a liquid crystal layer filled in at least one of the microcavities; an encapsulation layer formed on the roof layer, the encapsulation layer configured to cover the injection hole and to seal the microcavities; and an organic layer formed on the encapsulation layer.
Abstract:
A liquid crystal display includes: a substrate including a plurality of pixel areas; a TFT disposed on the substrate; a pixel electrode connected with the TFT and disposed on the TFT; a common electrode positioned on the pixel electrode and separated from the pixel electrode by a microcavity; a roof layer disposed on the common electrode; an injection hole disposed in the common electrode and the roof layer along a long-axial direction of the substrate to expose a part of the microcavity; a liquid crystal layer filling the microcavity; a first polarizer having a polarization axis in a short-axial direction of the substrate on the roof layer; and a second polarizer having a polarization axis in a long-axial direction of the substrate below the substrate, in which heights of edges in the long-axial and short-axial directions of the substrate are larger than a height of the center of the substrate.
Abstract:
Provided are a display device and a manufacturing method thereof capable of preventing deformation of a microcavity and stably injecting an aligning agent and a liquid crystal. The display device includes a substrate including a plurality of pixel areas which includes a plurality of pixel columns and is disposed in a matrix form; a thin film transistor formed on the substrate; a pixel electrode connected to the thin film transistor and formed in the pixel area; a roof layer formed on the pixel electrode so as to be spaced apart from the pixel electrode with a microcavity therebetween; a first injection hole formed in the roof layer exposing the microcavity at a side edge of the pixel column; a liquid crystal layer filling the microcavity; and an encapsulation layer formed on the roof layer so as to cover the first injection hole to seal the microcavity.
Abstract:
A display device includes: a substrate; a thin film transistor; a pixel electrode; a common electrode; a liquid crystal layer; and an encapsulation layer. The thin film transistor is disposed on the substrate. The pixel electrode is disposed on the thin film transistor. The common electrode is disposed on the pixel electrode and is separated from the pixel electrode via a microcavity therebetween. The liquid crystal layer fills the microcavity. The encapsulation layer is configured to seal the microcavity, wherein the encapsulation layer has an opening positioned at a portion overlapping the microcavity.
Abstract:
A liquid crystal display is provided. A passivation layer is disposed on a substrate. A first microcavity is disposed on the passivation layer. A second microcavity is disposed on the passivation layer and spaced apart from the first microcavity at a first spacing and along a first direction. A fixing member is disposed between the first microcavity and the second microcavity. A roof layer is disposed on the first and the second microcavities and the fixing member, wherein the first and the second microcavities include liquid crystal molecules.
Abstract:
It is provided a method of manufacturing a display device for which the damage caused to the display panel due to processing at high temperatures is reduced. The method of manufacturing a display device includes: preparing a carrier substrate including a surface treated region; laying a mother substrate on the carrier substrate; progressing a process of forming a thin film on the mother substrate; and separating the carrier substrate from the mother substrate by using the surface treated region as an initial separation point. Bonding is formed between the carrier substrate and the mother substrate during forming the thin film over the areas that are not surface treated. The two substrates may be separated by disposing permeating oil on the surface treated region wherefrom oil permeates through the remaining regions by osmotic pressure. This way damage caused to the display panel during thin film processing is reduced.
Abstract:
The inventive concept relates to a light unit and a diffuser separated from the light source at a predetermined distance and having a cylindrical structure, and a cylindrical structure display device including the same.