Abstract:
A method for manufacturing a transparent display device includes: providing a transparent flexible substrate on a support substrate; forming a display unit on a front side of the transparent flexible substrate; separating the transparent flexible substrate from the support substrate; and cleaning a rear side of the transparent flexible substrate with plasma.
Abstract:
An organic light-emitting device having a resonance structure includes a substrate; a first electrode and a second electrode on the substrate and facing each other; an emission layer between the first electrode and the second electrode; a first hole transport layer between the first electrode and the emission layer; and a second hole transport layer between the first hole transport layer and the emission layer. An electron mobility of the second hole transport layer is 5 times to 100 times greater than an electron mobility of the first hole transport layer, and a thickness of the second hole transport layer corresponds to a resonance distance of a wavelength of emission light of the emission layer.
Abstract:
A data compensator includes first logic, second logic, third logic, fourth logic, and fifth logic. The first logic calculates block compensation coefficients for blocks in a first frame based on first pixel data of the first frame. The second logic generates first gamma applied pixel data based on the first pixel data of the first frame and to generate second gamma applied pixel data based on the first gamma applied pixel data and second pixel data of a second frame adjacent the first frame. The third logic selects a number of the block compensation coefficients based on a pixel coordinate. The fourth logic generates a pixel compensation coefficient corresponding to the second pixel data by interpolating the selected block compensation coefficients based on the pixel coordinate. The fifth logic generates output pixel data based on the second gamma applied pixel data and the pixel compensation coefficient.
Abstract:
Provided is an organic light emitting diode which can easily control color coordinates and improve a device's life span characteristic by using an auxiliary dopant having a higher band gap energy than that of a host, and preferably, having an absolute value of the highest occupied molecular orbital energy level equal to or higher than that of the host, or an absolute value of the lowest unoccupied molecular orbital energy level equal to or lower than that of the host. The organic light emitting diode includes a first electrode, an emission layer disposed on the first electrode and including a host, an emitting dopant and an auxiliary dopant, and a second electrode disposed on the emission layer. Here, the auxiliary dopant has a higher band gap energy than the host. A method of fabricating the organic light emitting diode is provided.
Abstract:
An organic light emitting display device includes a first electrode on a substrate, an auxiliary electrode on the substrate, the auxiliary electrode being spaced apart from the first electrode, a protrusion on the auxiliary electrode, a pixel defining layer overlapping end portions of the first electrode and of the auxiliary electrode, the pixel defining layer separating the first electrode from the auxiliary electrode, an organic layer on the first electrode, and a second electrode on the organic layer, the protrusion electrically connecting the second electrode to the auxiliary electrode.
Abstract:
An organic light emitting diode device includes a first electrode and a second electrode facing each other, a charge-generating layer interposed between the first electrode and the second electrode, a first light emitting unit that emits blue and is interposed between the first electrode and the charge-generating layer, and a second light emitting unit that emits white by combining the blue and is interposed between the second electrode and the charge-generating layer. The first light emitting unit includes a blue emission layer, a first charge transport layer disposed on one side of the blue emission layer and including an alkali metal complex compound and a first charge transport material, and a second charge transport layer disposed on one side of the first charge transport layer and including the alkali metal complex compound and a second charge transport material that has different charge mobility from the first charge transport material.
Abstract:
A window manufacturing system includes a first wire, a second wire spaced apart from the first wire, a controller moving the first wire up and down and the second wire up and down, and a load carrier connected to the first wire and the second wire. Window substrates are disposed on the load carrier. The controller moves the first wire and the second wire in opposite directions to each other.
Abstract:
A method for manufacturing a transparent display device includes: providing a transparent flexible substrate on a support substrate; forming a display unit on a front side of the transparent flexible substrate; separating the transparent flexible substrate from the support substrate; and cleaning a rear side of the transparent flexible substrate with plasma.
Abstract:
An organic light-emitting device having a resonance structure includes a substrate; a first electrode and a second electrode on the substrate and facing each other; an emission layer between the first electrode and the second electrode; a first hole transport layer between the first electrode and the emission layer; and a second hole transport layer between the first hole transport layer and the emission layer. An electron mobility of the second hole transport layer is 5 times to 100 times greater than an electron mobility of the first hole transport layer, and a thickness of the second hole transport layer corresponds to a resonance distance of a wavelength of emission light of the emission layer.
Abstract:
A white light-emitting device includes a first electrode; a first barrier rib on the first electrode including a first color conversion material; a second barrier rib on the first electrode spaced apart from the first barrier rib and including a second color conversion material; a third color layer between the first barrier rib and the second barrier rib that emits white light when light emitted from the third color layer is combined with light emitted from first color conversion material and light emitted from the second color conversion material; and a second electrode on the first barrier rib, the second barrier rib, and the third color layer.