Abstract:
A display device may include a substrate, a transistor, a pixel electrode, a roof layer, and a liquid crystal layer positioned in microcavities between the roof layer and the substrate. The roof layer may include a first roof portion and a second roof portion. The first roof portion may overlap the pixel electrode and may be directly connected to the second roof portion. The second roof portion may be positioned closer to the transistor than the first roof portion. A minimum distance between the substrate and the second roof portion may be less than a minimum distance between the substrate and the first roof portion.
Abstract:
A liquid crystal display includes a substrate; a thin film transistor on the substrate; a pixel electrode connected to the thin film transistor; a first insulating layer facing the pixel electrode; a plurality of microcavities each defined between the pixel electrode and the first insulating layer and including a liquid crystal injection hole exposing an inside of the microcavity; a liquid crystal layer including liquid crystal molecules, in the microcavities; a light blocking layer between adjacent microcavities; and a passivation layer member enclosing the light blocking layer.
Abstract:
A display device and a method of manufacturing the display device improve reliability by preventing contact between a color filter, a light blocking member and a liquid crystal layer. The display device includes: a substrate including pixel areas; a thin film transistor formed on the substrate; a pixel electrode connected to the thin film transistor and formed in the pixel areas; a roof layer formed on the pixel electrode; microcavities interposed between the pixel electrode and the roof layer; an injection hole formed in the roof layer, the injection hole configured to expose at least a portion of the microcavities; a liquid crystal layer filled in at least one of the microcavities; an encapsulation layer formed on the roof layer, the encapsulation layer configured to cover the injection hole and to seal the microcavities; and an organic layer formed on the encapsulation layer.
Abstract:
A liquid crystal display is provided. A passivation layer is disposed on a substrate. A first microcavity is disposed on the passivation layer. A second microcavity is disposed on the passivation layer and spaced apart from the first microcavity at a first spacing and along a first direction. A fixing member is disposed between the first microcavity and the second microcavity. A roof layer is disposed on the first and the second microcavities and the fixing member, wherein the first and the second microcavities include liquid crystal molecules.
Abstract:
A liquid crystal display includes a substrate, a thin film transistor, a first protection layer, a pixel electrode, a light blocking layer, a second protection layer, and a roof layer. The thin film transistor is disposed on the substrate. The first protection layer is disposed on the thin film transistor. The pixel electrode is disposed on the first protection layer. The light blocking layer is disposed on the pixel electrode to cover the thin film transistor. The second protection layer is disposed on the light blocking layer. The roof layer is disposed to face the pixel electrode, wherein a plurality of microcavities having injection holes are formed between the pixel electrode and the roof layer. The microcavities comprise liquid crystal molecules, and the first protection layer and the second protection layer have different etch rates.
Abstract:
A liquid crystal display is provided. A passivation layer is disposed on a substrate. A first microcavity is disposed on the passivation layer. A second microcavity is disposed on the passivation layer and spaced apart from the first microcavity at a first spacing and along a first direction. A fixing member is disposed between the first microcavity and the second microcavity. A roof layer is disposed on the first and the second microcavities and the fixing member, wherein the first and the second microcavities include liquid crystal molecules.
Abstract:
A display device may include a substrate and a first roof layer portion that is formed of a roof layer material and overlaps the substrate in a direction, the direction is perpendicular to a surface of the substrate. A lateral surface of the first roof layer portion is disposed in a plane. The display device may further a second roof layer portion formed of the roof layer material and separated from the first roof layer portion. The display device may further a common electrode portion disposed between the first roof layer portion and the substrate in the direction. A lateral surface of the common electrode portion is disposed in the plane or is spaced from the lateral surface of the first roof layer portion in a second direction parallel to the surface of the substrate. The display device may further a pixel electrode disposed between the first common electrode portion and the substrate.
Abstract:
The inventive concept relates to a display device preventing from generating a reflection light at a portion region of a thin film transistor and a manufacturing method thereof, and a display device according to an exemplary embodiment of the inventive concept includes: a substrate; a thin film transistor; a pixel electrode; a light blocking member formed on the pixel electrode to overlap the thin film transistor, the light blocking member being formed on an opposite side of the thin film transistor with respect to the pixel electrode, a common electrode formed on the pixel electrode to be spaced apart from the pixel electrode with a plurality of microcavities interposed therebetween; a roof layer formed on the common electrode; an injection hole exposing a portion of each microcavity; a liquid crystal layer filling the microcavity; and an encapsulation layer formed on the roof layer.
Abstract:
A display device may include a substrate and a first roof layer portion that is formed of a roof layer material and overlaps the substrate in a direction, the direction is perpendicular to a surface of the substrate. A lateral surface of the first roof layer portion is disposed in a plane. The display device may further a second roof layer portion formed of the roof layer material and separated from the first roof layer portion. The display device may further a common electrode portion disposed between the first roof layer portion and the substrate in the direction. A lateral surface of the common electrode portion is disposed in the plane or is spaced from the lateral surface of the first roof layer portion in a second direction parallel to the surface of the substrate. The display device may further a pixel electrode disposed between the first common electrode portion and the substrate.
Abstract:
A liquid crystal display includes a substrate; a thin film transistor on the substrate; a pixel electrode connected to the thin film transistor; a first insulating layer facing the pixel electrode; a plurality of microcavities each defined between the pixel electrode and the first insulating layer and including a liquid crystal injection hole exposing an inside of the microcavity; a liquid crystal layer including liquid crystal molecules, in the microcavities; a light blocking layer between adjacent microcavities; and a passivation layer member enclosing the light blocking layer.