Abstract:
A two-stage decision feedback equalizer. The decision feedback equalizer is configured to receive serial data, at an analog input, at a first data rate. The two-stage decision feedback equalizer has an analog input and four digital outputs, and includes a first stage and a second stage. The first stage is connected to the analog input, and includes a half-rate predictive decision feedback equalizer consisting of current mode logic circuits. The second stage is connected to the first stage, and consists of complementary metal oxide semiconductor circuits.
Abstract:
A method of calibrating coefficients of a calibrated decision feedback equalizer (DFE) across a process, voltage, and temperature (PVT) range, the calibrated DFE comprising a plurality of DFE taps for reducing distortions of an input signal, and a sampler for sampling the input signal, the method including applying a preset voltage to an input of the calibrated DFE, setting a DFE tap of the plurality of DFE taps to a maximum value, generating a source reference, via a source reference calibrator, to apply to the DFE tap, changing the source reference to a first level that causes an output of the sampler to transition from a first state to a second state, determining the first level as a calibrated source reference, and applying the calibrated source reference to the DFE tap during normal operation of the calibrated DFE.
Abstract:
A phase-locked loop. The phase-locked loop includes a voltage-controlled oscillator having: a control input, and a clock output; and a phase frequency detector having: a reference clock input, a feedback clock input, an up output configured to be either in a set state or a reset state, and a down output configured to be either in a set state or a reset state. The up output and the down output are connected to the control input. The clock output is connected to the feedback clock input. The phase frequency detector includes an adjustable delay block configured to delay, by an adjustable delay time: a transition of the up output from the set state to the reset state, and a transition of the down output from the set state to the reset state.
Abstract:
A display interface for transmitting reverse data. The display interface includes a timing controller, a first plurality of driver integrated circuits, a first shared data lane connected to the timing controller and to each of the first plurality of driver integrated circuits, and a shared synchronization lane connected to the timing controller and to each of the first plurality of driver integrated circuits. Each of the first plurality of driver integrated circuits has a data input configured to receive reverse data from a display panel, and a buffer configured to store reverse data. The timing controller is configured to periodically send a synchronization pulse having a triggering edge. Each of the first plurality of driver integrated circuits is configured to periodically send, on the first shared data lane, reverse data to the timing controller in a respective time slot of a plurality of non-overlapping time slots, after each triggering edge.
Abstract:
A system for reduced-rate predictive DFE. In one embodiment a plurality of sampler-multiplexer blocks, each including two samplers and a multiplexer-latch, controlled by a multi-phase clock, sample the received analog signal one at a time, and the output of each multiplexer-latch, which may represent the value of the last received bit, is used to control the select input of another multiplexer-latch, so that the other multiplexer-latch selects the appropriate one of two samplers, each applying a different correction to the received analog signal before sampling. Each multiplexer-latch is a clocked element that tracks the data input when the signal at its clock input has a first logic level and retains its output state when its clock input has another (i.e., a second) logic level.
Abstract:
An electronic device includes a clock configured to transmit a first clock signal and a second clock signal for operation of the electronic device; a duty cycle corrector coupled to the clock to correct a duty cycle of the first and second clock signals, the duty cycle corrector being configured to: assign and store a first duty cycle correction code in response to the first clock signal; assign and store a second duty cycle correction code in response to the second clock signal; calculate an offset code based on the first and second duty cycle correction codes; and negate the offset code from results of duty cycle correction operations.
Abstract:
A system and method for detecting signal levels in a multi-level signaling receiver. In one embodiment, a plurality of comparators, each including a differential pair, such as a differential pair of field-effect transistors (FETs) are assembled in a stacked configuration so that in some states current flows through FETs of the plurality of differential pairs in series, resulting in a reduction in power consumption.
Abstract:
A circuit for duty cycle detection and correction, for a serial data transmitter. The circuit includes a pattern generator having a pattern data output configured to be selectively connected to the data input of the serial data transmitter, and a duty cycle detection circuit, connected to the output of the serial data transmitter. The pattern generator is configured to produce a pattern including a sequence including an odd number of consecutive zeros and a same number of consecutive ones. The duty cycle detection circuit is configured to measure a difference between a first interval and a second interval, in a signal at the output of the serial data transmitter, the first interval corresponding to the odd number of consecutive zeros within the sequence and the second interval corresponding to the odd number of consecutive ones within the sequence.
Abstract:
A display interface for transmitting reverse data. The display interface includes a timing controller, a first plurality of driver integrated circuits, a first shared data lane connected to the timing controller and to each of the first plurality of driver integrated circuits, and a shared synchronization lane connected to the timing controller and to each of the first plurality of driver integrated circuits. Each of the first plurality of driver integrated circuits has a data input configured to receive reverse data from a display panel, and a buffer configured to store reverse data. The timing controller is configured to periodically send a synchronization pulse having a triggering edge. Each of the first plurality of driver integrated circuits is configured to periodically send, on the first shared data lane, reverse data to the timing controller in a respective time slot of a plurality of non-overlapping time slots, after each triggering edge.
Abstract:
A phase-locked loop. The phase-locked loop includes a voltage-controlled oscillator having: a control input, and a clock output; and a phase frequency detector having: a reference clock input, a feedback clock input, an up output configured to be either in a set state or a reset state, and a down output configured to be either in a set state or a reset state. The up output and the down output are connected to the control input. The clock output is connected to the feedback clock input. The phase frequency detector includes an adjustable delay block configured to delay, by an adjustable delay time: a transition of the up output from the set state to the reset state, and a transition of the down output from the set state to the reset state.