Abstract:
A display device includes a substrate, a first conductive layer on the substrate and including a lower light blocking pattern and a first signal line, a buffer layer on the first conductive layer, a semiconductor layer on the buffer layer and including a first semiconductor pattern and a second semiconductor pattern separated from the first semiconductor pattern, an insulating layer on the semiconductor layer and including an insulating layer pattern, a second conductive layer on the insulating layer and including a second signal line, a planarization layer on the second conductive layer, and a third conductive layer on the planarization layer and including an anode electrode. The first semiconductor pattern is electrically connected to the lower light blocking pattern by the anode electrode, and at least a portion of the second semiconductor pattern is isolated from and overlaps each of the first signal line and the second signal line.
Abstract:
A display device and a method of manufacturing a display device are provided. The display device includes a first conductive layer on a substrate, a passivation layer disposed on the first conductive layer and exposing at least a part of the first conductive layer, a second conductive layer disposed on the passivation layer and covering an upper surface of the passivation layer, a via layer on the second conductive layer, a third conductive layer including a first electrode, a second electrode, and a connection pattern, and spaced apart from each other on the via layer, and a light emitting element having ends that are disposed on the first electrode and the second electrode, respectively. The connection pattern electrically connects the first conductive layer and the second conductive layer through a first contact hole penetrating the via layer.
Abstract:
A display device includes: a substrate; a first semiconductor layer disposed on the substrate, where the first semiconductor layer includes a channel region and a doped region; a first gate electrode disposed to overlap the channel region of the first semiconductor layer; an intermediate film disposed on the first semiconductor layer and the first gate electrode; and a first electrode disposed on the intermediate film, where an opening is defined through the intermediate film to overlap the doped region of the first semiconductor layer, the doped region of the first semiconductor layer and the first electrode contacts each other through the opening, and an area of a cross-section of the opening parallel to the substrate is in a range of about 49 μm2 to about 81 μm2.
Abstract:
A display device, includes: a pixel connected to a scan line and a data line crossing the scan line, wherein the pixel includes a light emitting element, a driving transistor configured to control a driving current supplied to the light emitting element according to a data voltage received from the data line, and a first switching transistor configured to apply the data voltage of the data line to the driving transistor according to a scan signal applied to the scan line; wherein the driving transistor includes a first active layer including an oxide semiconductor and a first oxide layer on the first active layer and including an oxide semiconductor; and wherein the first switching transistor includes a second active layer on the first active layer and including the same oxide semiconductor as the first oxide layer.
Abstract:
A thin film transistor display panel including: a first insulating substrate; a first semiconductor disposed between the first insulating substrate and a first gate insulating layer; a gate electrode disposed on the first gate insulating layer, the gate electrode overlapping the first semiconductor; a second gate insulating layer disposed on the gate electrode; a second semiconductor disposed on the second gate insulating layer, the second semiconductor overlapping the gate electrode; an interlayer insulating layer disposed on the second semiconductor; and a source electrode and a drain electrode disposed on the interlayer insulating layer spaced apart from each other, the source electrode and the drain electrode connected to the first semiconductor and the second semiconductor.
Abstract:
A thin film transistor substrate includes a substrate, a bottom gate on the substrate, a first insulating layer on the substrate and on the bottom gate, a drain on the first insulating layer, a source on the first insulating layer, the source including a first source at a first side of the drain and a second source at a second side of the drain, an active layer on the first insulating layer, the active layer including a first active layer contacting the drain and the first source and a second active layer contacting the drain and the second source, a second insulating layer on the drain, the source, and the active layer, and a top gate on the second insulating layer.
Abstract:
A display device includes a first conductive layer disposed on a substrate, a passivation layer disposed on the first conductive layer, a second conductive layer disposed on the passivation layer, a via layer disposed on the second conductive layer, a third conductive layer disposed on the via layer, the third conductive layer including a first electrode, a second electrode, a connection pattern, the first electrode, the second electrode, and the connection pattern being spaced apart from each other, and a light emitting element, a first end and a second end of the light emitting element being disposed on the first electrode and the second electrode, respectively, wherein the connection pattern electrically connects the first conductive layer and the second conductive layer through a first contact hole penetrating the via layer and the passivation layer.
Abstract:
A display device includes first banks on a substrate and spaced apart from each other, a first electrode and a second electrode on the first banks and spaced apart from each other, a first insulating layer on the first electrode and the second electrode, and light emitting elements on the first insulating layer and each having ends on the first electrode and the second electrode. Each of the first banks includes a first pattern portion including concave portions and convex portions. The first pattern portions of the first banks are disposed on side surfaces of the first banks. The side surfaces are spaced apart and face each other. Each of the first electrode and the second electrode includes a second pattern portion on the first pattern portion and having a pattern shape corresponding to the first pattern portion on a surface thereof.
Abstract:
According to some embodiments of the present disclosure, a display device includes an active pattern including a metal oxide, a gate electrode overlapping the active pattern, a first capacitor electrode spaced apart from the active pattern and including a conductive oxide, and a second capacitor electrode on the first capacitor electrode.
Abstract:
A display device and a method of driving a display device are provided. A display device includes a substrate, a first conductive layer on the substrate and including a lower light blocking pattern, a buffer layer on the first conductive layer, a semiconductor layer including a semiconductor pattern on the buffer layer, a gate insulating layer on the semiconductor pattern, a second conductive layer including a gate electrode on the gate insulating layer, a planarization layer on the second conductive layer, and a third conductive layer on the planarization layer and including a first conductive pattern electrically coupling the lower light blocking pattern to the semiconductor pattern, wherein the first conductive pattern is coupled to the lower light blocking pattern through a first contact hole passing through the planarization layer and the buffer layer, and coupled to the semiconductor pattern through a second contact hole passing through the planarization layer.