Abstract:
A light source apparatus includes a plurality of light source gate lines extending in a first direction, a plurality of light source data lines extending in a second direction crossing the first direction, a plurality of light source emission lines, a plurality of feedback lines and a plurality of light source blocks. At least one of the light source blocks is connected to the light source gate line, the light source data line, the light source emission line and the feedback line.
Abstract:
A method of driving a light-source module includes adjusting a frequency of a boosting switching signal based on a dimming signal which controls luminance of a light-emitting diode (“LED”) string of the light-source module, where the LED string comprises a plurality of LEDs connected to each other in series, and controlling a main transistor in response to the boosting switching signal to transfer a driving voltage to the LED string.
Abstract:
A method of driving a light-source module includes adjusting a frequency of a boosting switching signal based on a dimming signal which controls luminance of a light-emitting diode (“LED”) string of the light-source module, where the LED string comprises a plurality of LEDs connected to each other in series, and controlling a main transistor in response to the boosting switching signal to transfer a driving voltage to the LED string.
Abstract:
A light source apparatus includes a plurality of light source gate lines extending in a first direction, a plurality of light source data lines extending in a second direction crossing the first direction, a plurality of light source emission lines, a plurality of feedback lines and a plurality of light source blocks. At least one of the light source blocks is connected to the light source gate line, the light source data line, the light source emission line and the feedback line.
Abstract:
A display device includes a display panel, a data driver which transmits a data voltage to the display panel, a first flexible printed circuit board attached to the display panel and including an input side wiring electrically connected to the data driver, a first printed circuit board (PCB) electrically connected to the input side wiring to transmit a high-speed driving signal to the data driver, and a metal tape overlapping the input side wiring in a plan view and attached on the first flexible printed circuit board, where a part of the metal tape overlapping the input side wiring in the plan view defines an opening.
Abstract:
A method of driving a light-source module includes adjusting a frequency of a boosting switching signal based on a dimming signal which controls luminance of a light-emitting diode (“LED”) string of the light-source module, where the LED string comprises a plurality of LEDs connected to each other in series, and controlling a main transistor in response to the boosting switching signal to transfer a driving voltage to the LED string.
Abstract:
A backlight unit includes a light source part including a light-emitting diode array, a DC/DC converter, a driving current controller, and a reference voltage variable part. The backlight unit is operated in a first mode or a second mode. The driving current controller controls a driving current flowing through the light-emitting diode array to have a first current level during the first mode and controls the driving current flowing through the light-emitting diode array to have a second current level during the second mode. The reference voltage variable part applies a first reference voltage to the driving current controller during the first mode and applies a second reference voltage to the driving current controller during the second mode.
Abstract:
A backlight unit including, a controller configured to generate a control signal, a power converter configured generate a light-source voltage in response to the control signal, and at least one light emitting diode string connected between a first node and a second node and supplied with the light-source voltage from the first node, wherein the controller includes a current controller configured to adjust a current flow through the light emitting diode string, and an overvoltage controller connected between the light emitting diode string and the current controller, including a passive element, wherein the overvoltage controller is configured to connect the passive element between the second node and the current controller when a voltage of the second node of the light emitting diode is higher than a reference voltage.