Abstract:
A system comprises one or more print heads (18,20,22) configured to selectively print droplets (34,36,38) of one or more polycarbonate precursor solutions comprising one or more polycarbonate precursor compounds onto one or more target locations on a substrate to form one or more reactive mixture droplets at each target location, and an environmental system configured to expose the reactive mixture droplets to reaction conditions that polymerize the one or more polycarbonate precursor compounds to form a polycarbonate. A method comprises printing droplets of one or more polycarbonate precursor solutions comprising one or more polycarbonate precursor compounds onto one or more target locations on a substrate to form a reactive mixture droplet at each target location, and exposing the reactive mixture droplets to reaction conditions to polymerize the one or more polycarbonate precursor compounds to form a polycarbonate.
Abstract:
Systems, devices, and methods according to the present disclosure are configured for use in additive manufacturing, e.g. 3D printing. Various materials, including thermoplastic materials, can be used with an additive manufacturing system to create a part composite. Systems, devices, and methods described herein can be used to identify a characteristic of a material or of a material container for use with an additive manufacturing system. The identified characteristic can be used to determine an authenticity of the material. Based on the authenticity, one or more features or functions of the additive manufacturing system can be updated. The characteristic of the material may be optical information on the container of the material, e.g. a bar code, may be identified by emitting x-ray radiation and receiving a spectral characteristic, may be an electrical or magnetic characteristic or may be engraved on the surface of the material itself.
Abstract:
Systems, devices, and methods according to the present disclosure are configured for use in additive manufacturing. Systems for additive manufacturing can include stand-alone manufacturing units, a series of units on an assembly line, or a high-capacity system with workflow automation features including a conveyor for transporting parts to or from a build area, or a robotic arm for transporting parts or adjusting a system component. An additive manufacturing system can include a movable extrusion head (170) assembly and two or more extrusion nozzle cartridges (171, 172) that can be selectively coupled to the extrusion head assembly. The head assembly can include a drive assembly for use with multiple different nozzle cartridges. A portion of a nozzle cartridge can be heated when the cartridge is decoupled from the extrusion head assembly, such as to preheat a portion of the cartridge prior to a build operation using the cartridge.
Abstract:
Methods of making articles using additive manufacturing processes are disclosed. The article is built up from a multitude of layers. At least one layer includes a modeling material comprising a cross-linkable polycarbonate resin containing a photoactive group derived from a benzophenone. When exposed to an effective dosage of ultraviolet radiation, the modeling material crosslinks. This improves various properties of the final article.
Abstract:
Systems, devices, and methods according to the present disclosure are configured for use in additive manufacturing. Systems for additive manufacturing can include stand-alone manufacturing units, a series of units on an assembly line, or a high-capacity system with workflow automation features including a conveyor for transporting parts to or from a build area, or a robotic arm for transporting parts or adjusting a system component. An additive manufacturing system (100) can include a flow regulator (130) to change a temperature of a thermoplastic material at or in a tip (150) of a material extrusion nozzle cartridge (171), such as to enable or inhibit flow of the thermoplastic material from the tip. The flow regulator can be configured to provide a specified gas or liquid at a specified temperature, velocity, or volume.
Abstract:
A system comprises an extrusion head to selectively extrude a bead of a precursor solution onto a target road on a substrate within a build area, the precursor solution comprising a polyimide precursor compound in a solvent, an actuator coupled to the extrusion head to move the extrusion head, a control system coupled to the actuator to control the extrusion head along the target road and selectively dispense the precursor solution to the extrusion head, and an environmental system configured to accommodate the target road during fabrication, the environmental system configured to expose the dispensed precursor solution to a temperature selected to evaporate solvent from the solution to initiate polymerization of the polyimide precursor compound to form at least a portion of a polyimide part.
Abstract:
A system for fabricating a part (12) comprises a build chamber (14), a powder feed system (18) for feeding a polymeric powder (22) to the build chamber, a heating system (40) for melting and fusing the polymeric powder to form a fused polymeric part in the build chamber, and a vacuum system (50) to apply a specified vacuum pressure to the build chamber, wherein the vacuum pressure is at or below a threshold pressure so that a porosity of the fused polymeric part is at or below a specified threshold porosity.
Abstract:
A process for making an article by additive manufacture having resistance to dripping when burned comprising (1) depositing a multitude of thermoplastic monofilament strands using a fused deposition modeling apparatus in a pattern and (2) fusing the multitude of strands together to make an article of manufacture having voids therein; wherein the article of additive manufacture has (a) at least 50% of the monofilament strands oriented within 45 degrees of the long part of the axis; (b) the multitude of strands is greater than 10; (c) having a specific micro structure; and (d) is made from a thermoplastic polymer composition that is either the combination of a thermoplastic polymer with a flame retardant compound, a thermoplastic resin having flame resistant properties, or a combination of a thermoplastic resin having flame resistant properties with a flame retardant compound.
Abstract:
A reduced density article of manufacture, and process for making same, made from a thermoplastic polycarbonate composition. The reduced density article of manufacture has (1) a certain density and (2) a certain micro structure containing from 1% to 20% by volume of voids wherein at least 80% of the voids are high aspect voids and less than 20% of the voids are spherical voids with a diameter of 10 to 100 microns. The polycarbonate thermoplastic composition comprises at least 50 mole % of a certain bisphenol A. The reduced density article of manufacture is made by a monofilament additive manufacturing technique.