Abstract:
The melt viscosity of thermoplastic compositions of polyphenylene ether resin and rubber modified high impact polystyrene resin is significantly reduced by inclusion of a tetra-alkyl bisphenol polycarbonate resin. The resulting blend can be processed at lower temperatures, and, after molding, exhibits better UV color stability while retaining most important other physical properties. Both the compositions and a method of preparation are described.
Abstract:
A fiber is prepared by melt extruding a composition including specific amounts of a polyamide and a polyphenylene ether along with a compatabilizer. Particular combinations produce fibers having a desirable combination of good tenacity and low denier per fiber. Compared to a fiber prepared from polyamide alone, the present fiber exhibits improved heat resistance and flame resistance.
Abstract:
A fiber is prepared by melt extruding a composition including specific amounts of a polyamide and a polyphenylene ether along with a compatabilizer. Particular combinations produce fibers having a desirable combination of good tenacity and low denier per fiber. Compared to a fiber prepared from polyamide alone, the present fiber exhibits improved heat resistance and flame resistance.
Abstract:
A polyamide-poly(arylene ether) composition is prepared by melt blending specific amounts of components including a polyamide, a poly(arylene ether), a hydrogenated block copolymer of an alkenyl aromatic monomer and a conjugated diene, a compatibilizing agent, and partially saponified ester of a C16-C36 aliphatic carboxylic acid and a C2-C12 aliphatic alcohol. The composition is useful for molding articles that have a significantly reduced incidence of the cosmetic defect known as “silver streaks”.
Abstract:
Thermoplastic resin composition are provided that comprise a thermoplastic resin and an amount of antioxidant effective to increase the adhesion of paint to an article made from the composition. Also provided are methods to improve the paint adhesion of articles wherein the articles have been subjected to a temperature of at least about 330° F. for period of at least about 10 minutes. In a preferred embodiment, the antioxidant, also known as a stabilizer, or mixture of stabilizers is selected from the group consisting of the phenolic antioxidants, the 3-arylbenzofuranones, the hindered amine stabilizers, the ultraviolet light absorbers, the alkaline metal salts of fatty acids, the hydrotalcites, the epoxydized soybean oils, the hydroxylamines, the tertiary amine oxides, thermal reaction products of tertiary amine oxides, the thiosynergists, and mixture containing at least one of the foregoing.
Abstract:
The present invention relates to methods to improve the dampening characteristics of compositions and the improved compositions. The compositions made by the method comprises (a) a polymer system selected from the group consisting of immiscible polymer blends, miscible polymer blends, copolymers, thermoplastic polymers and thermosetting polymers, and (b) a block copolymer comprising: (i) at least one block derived from aromatic vinyl units and (ii) at least one block derived from at least isoprene and a vinyl aromatic monomer and optionally butadiene, and having a glass transition temperature of at least 10° C. In a preferred embodiment, the block copolymer comprises at least one block of polystyrene and at least one block derived from isoprene, styrene and butadiene, and the polymer system comprises at least one polyamide resin.
Abstract:
The flexural modulus and heat distortion temperature of environmentally tough, compatible blends of polyphenylene ether resin, poly(alkenyl aromatic) resin, polyolefin resin and an alkenyl aromatic-based compatibilizer are improved by the inclusion in the blend of minor amounts of fibrous glass, as described. The compositions are injection moldable into various shaped articles.
Abstract:
Blends of (i) an impact resistant interpolymer comprising crosslinked acrylic or methacrylic rubber, crosslinked styrene-acrylonitrile, and uncrosslinked styrene-acrylonitrile polymer components, (ii) a styrene-acrylonitrile copolymer resin, (iii) an acrylic polymer, and (iv) a multistage grafted acrylic elastomer are disclosed. The blends display a good combination of physical properties including gloss, impact strength and tensile properties.
Abstract:
Thermoplastic compositions comprised of compatible combinations of a polyphenylene ether resin and a polyamide resin and which require improved thermal properties can be impact modified with a modifying agent having a core-shell structure comprised of a crosslinked acrylate core and a crosslinked styrenic shell.
Abstract:
A composition is prepared by melt blending specific amounts of a polyamide, a flame retardant that includes brominated polystyrene, a polymeric flame retardant synergist, and a compatibilizing agent. The polymeric flame retardant synergist can be a poly(arylene ether), a poly(arylene ether)-polysiloxane block copolymer, or a mixture thereof. The composition is useful for molding automotive and electrical parts.