Abstract:
Techniques are described for processing video data to conform to a high dynamic range (HDR)/wide color gamut (WCG) color container. Operations may be applied to video data in certain color spaces to enable compression of High Dynamic Range (HDR) and Wide Color Gamut (WCG) video in such a way that an existing receiver without HDR and WCG capabilities would be able to display a viewable Standard Dynamic Range (SDR) video from the received bitstream without any additional processing. Certain embodiments enable delivery of a single bitstream from which an existing decoder obtains the viewable SDR video directly and an HDR capable receiver reconstruct the HDR and WCG video by applying the specified processing. Such embodiments may improve the compression efficiency of hybrid based video coding systems utilized for coding HDR and WCG video data.
Abstract:
Provided are techniques for low complexity video coding. For example, a video coder may be configured to calculate a first sum of absolute difference (SAD) value between a coding unit (CU) block and a first corresponding block in a reference frame, and define branching conditions for branching of CU sizes based on the first SAD value, the branching conditions including a background condition and/or a homogeneous condition. The video coder may be configured to detect the background condition if the first SAD value of the CU block is less than a first threshold background value, and detect the homogeneous condition if a second SAD value of a sub-block of the CU block is between upper and lower homogeneous threshold values based on the first SAD value. The branching of the CU sizes may be based on detecting the background or homogeneous conditions.
Abstract:
Processing high dynamic range and or wide color gamut video data using a fixed-point implementation. A method of processing video data may include receiving one or more supplemental enhancement information (SEI) messages that contain information specifying how to determine parameters for performing an inverse dynamic range adjustment process, receiving decoded video data, and performing the inverse dynamic range adjustment process on the decoded video data using fixed-point computing in accordance with the information in the one or more SEI messages.
Abstract:
Provided are techniques for low complexity video coding. For example, a video coder may be configured to calculate a first sum of absolute difference (SAD) value between a coding unit (CU) block and a first corresponding block in a reference frame, and define branching conditions for branching of CU sizes based on the first SAD value, the branching conditions including a background condition and/or a homogeneous condition. The video coder may be configured to detect the background condition if the first SAD value of the CU block is less than a first threshold background value, and detect the homogeneous condition if a second SAD value of a sub-block of the CU block is between upper and lower homogeneous threshold values based on the first SAD value. The branching of the CU sizes may be based on detecting the background or homogeneous conditions.
Abstract:
A device for encoding video data includes a memory configured to store video data, and a video encoder implemented in circuitry and configured to encode a future picture of the video data having a first display order position, the future picture being included in an intra period (IP) of the video data, the IP comprising a plurality of groups of pictures (GOPs), and after encoding the future picture, encode a picture of an ordinal first GOP of the plurality of GOPs using the future picture as a reference picture, each picture of the ordinal first GOP having display order positions earlier than the first display order position. Encoding the future picture in this manner may result in encoding performance improvements with minimal increases in encoding and decoding complexity.
Abstract:
This disclosure provides systems, methods, and devices for image signal processing that support improved correction of motion artifacts within image frames. In a first aspect, a method of image processing includes receiving a first image frame and a second image frame, determining a motion map indicating motion of objects within the first and second image frames. Additionally, motion hotspots may be identified within the second image frame based on the motion map. A temporal filtering process may be applied to portions of the second image frame located within motion hotspots to generate a corrected image frame. Other aspects and features are also claimed and described.
Abstract:
Processing high dynamic range and or wide color gamut video data using a fixed-point implementation. A method of processing video data may include receiving one or more supplemental enhancement information (SEI) messages that contain information specifying how to determine parameters for performing an inverse dynamic range adjustment process, receiving decoded video data, and performing the inverse dynamic range adjustment process on the decoded video data using fixed-point computing in accordance with the information in the one or more SEI messages.
Abstract:
In an example, a method of processing video may include receiving a bitstream including encoded video data and a colour remapping information (CRI) supplemental enhancement information (SEI) message. The CRI SEI message may include information corresponding to one or more colour remapping processes. The method may include decoding the encoded video data to generate decoded video data. The method may include applying a process that does not correspond to the CRI SEI message to the decoded video data before applying at least one of the one or more colour remapping processes to the decoded video data to produce processed decoded video data.
Abstract:
In general, techniques are described for processing high dynamic range (HDR) and wide color gamut (WCG) video data for video coding. A device comprising a memory and a processor may perform the techniques. The memory may store compacted fractional chromaticity coordinate (FCC) formatted video data. The processor may inverse compact the compacted FCC formatted video data using one or more inverse adaptive transfer functions (TFs) to obtain decompacted FCC formatted video data. The processor may next inverse adjust a chromaticity component of the decompacted FCC formatted video data based on a corresponding luminance component of the decompacted FCC formatted video data to obtain inverse adjusted FCC formatted video data. The processor may convert the chromaticity component of the inverse adjusted FCC formatted video data from the FCC format to a color representation format to obtain High Dynamic Range (HDR) and Wide Color Gamut (WCG) video data.
Abstract:
Systems, methods, and apparatus are provided for adaptively switching interpolation filters during the encoding of video data or the decoding of a video bitstream. In various implementations, a set of interpolation filters can be defined and made available to coding device. The coding device can select an interpolation filter for a given coding unit. The interpolation filter can be selected based on, for example, the coding level of the coding unit, among other things. In some examples, signaling of the selected interpolation filter can be simplified by selecting a subset of the set of interpolation filters for a given coding situation. An index indicating an interpolation filter from the subset can then be signaled. Alternatively, a decoder can derive an identity of the interpolation filter from data provided by a bitstream, in which case the index need not be explicitly signaled in the bitstream.