Abstract:
Embodiments provide methodologies for reliably storing data within a storage system using liquid distributed storage control. Such liquid distributed storage control operates to compress repair bandwidth utilized within a storage system for data repair processing to the point of operating in a liquid regime. Liquid distributed storage control logic of embodiments may employ a lazy repair policy, repair bandwidth control, a large erasure code, and/or a repair queue. Embodiments of liquid distributed storage control logic may additionally or alternatively implement a data organization adapted to allow the repair policy to avoid handling large objects, instead streaming data into the storage nodes at a very fine granularity.
Abstract:
Systems and methods which implement repair bandwidth control techniques, such as may provide a feedback control structure for regulating repair bandwidth in the storage system. Embodiments control a source object repair rate in a storage system by analyzing source objects represented in a repair queue to determine repair rate metrics for the source objects and determining a repair rate based on the repair rate metrics to provide a determined level of recovery of source data stored as by the source objects and to provide a determined level of repair efficiency in the storage system. For example, embodiments may determine a per storage object repair rate (e.g., a repair rate preference for each of a plurality of source objects) and select a particular repair rate (e.g., a maximum repair rate) for use by a repair policy. Thereafter, the repair policy of embodiments may implement repair of one or more source objects in accordance with the repair rate.
Abstract:
A client/receiver downloads data over a network path between a source and the receiver coupled by the network path and stores the media data in a presentation buffer of the receiver and from there it is consumed by a presentation element. The receiver monitors a presentation buffer fill level that represents what portion of the presentation buffer contains media data not yet consumed by a presentation element. The receiver makes requests for additional data to download. If the fill level is above a high fill threshold, the receiver does not make further requests and eventually the fill level goes down. If the fill level is below a low fill threshold, the receiver restarts the downloading and updates the fill level as media data is consumed by the presentation element. The fill level might be measured in units of memory storage capacity and/or units of presentation time.
Abstract:
Various embodiments enable “bundled FEC protection,” in which a single repair flow may be used to provide recovery protection for a plurality of individual source RTP streams. The embodiment techniques may utilize novel FEC source payload and repair payload definitions that enable a single repair flow to be defined for multiple RTP flows. For example, as FEC FRAME Raptor code options do not currently address the case of bundled protection of multiple media types over multiple real-time transport protocol (RTP) synchronization sources (SSRC's), RTP stream header extensions may be utilized to allow a single FEC RTP stream to be configured to provide redundancy for a plurality of source RTP streams, regardless of their content type (e.g., audio or video). Based on such extensions, the embodiment techniques allow for protection of multiple source RTP streams that each has a unique sequence number space.
Abstract:
Data objects can be delivered over a network using a file delivery system and universal object delivery and template-based file delivery. This might be done by forming source data into a sequence of data objects represented by symbols in packets, sending those to receivers on request, wherein a transmitter obtains a template file delivery table with delivery metadata for the data objects, and constructing a first transmission object identifier for a data object based on a transmission object identifier construction rule described in the template file delivery table. A receiver might receive packets, extract a second transmission object identifier, associate encoded symbols comprising the received data packet with the data object if the first transmission object identifier and the second transmission object identifier identify the same data object, and recover, at least approximately, the source data for the data object based on the encoded symbols associated with the data object.
Abstract:
Embodiments provide methodologies for reliably storing data within a storage system using liquid distributed storage control. Such liquid distributed storage control operates to compress repair bandwidth utilized within a storage system for data repair processing to the point of operating in a liquid regime. Liquid distributed storage control logic of embodiments may employ a lazy repair policy, repair bandwidth control, a large erasure code, and/or a repair queue. Embodiments of liquid distributed storage control logic may additionally or alternatively implement a data organization adapted to allow the repair policy to avoid handling large objects, instead streaming data into the storage nodes at a very fine granularity.
Abstract:
Transport accelerator (TA) systems and methods for accelerating delivery of content to a user agent (UA) of a client device are provided according to embodiments of the present disclosure. Embodiments comprise a TA architecture implementing a connection manager (CM) and a request manager (RM). A CM of embodiments requests chunks of content from a content server, receives data in response to requesting the chunks of content, wherein the received data is missing data from a requested chunk of content, and provides a receipt acknowledgement (ACK) for the missing data. The received data, which is missing data from a requested chunk of the chunks of content, may be passed through a communication protocol stack to an application for assembly into a one or more content objects.
Abstract:
An over-the-air (OTA) broadcast middleware unit is configured to receive aggregated session description data for a plurality of sessions, wherein each of the sessions transports media data related to common media content, and wherein each of the sessions is transmitted as part of an OTA broadcast, and extract at least some of the media data from the OTA broadcast based on the aggregated session description data. The OTA broadcast middleware unit may further deliver the extracted media data to a streaming client, such as a Dynamic Adaptive Streaming over HTTP (DASH) client.
Abstract:
Systems and methods which implement forward checking of data integrity are disclosed. A storage system of embodiments may, for example, comprise data integrity forward checking logic which is operable to perform forward checking of data integrity in real-time or near real-time to check that a number of node failures can be tolerated without loss of data. Embodiments may be utilized to provide assurance that a number of fragments needed for source data recovery will be available for the source objects most susceptible to failure when a certain number of additional fragments are lost, such as due to storage node failures.
Abstract:
Embodiments provide methodologies for reliably storing data within a storage system using liquid distributed storage control. Such liquid distributed storage control operates to compress repair bandwidth utilized within a storage system for data repair processing to the point of operating in a liquid regime. Liquid distributed storage control logic of embodiments may employ a lazy repair policy, repair bandwidth control, a large erasure code, and/or a repair queue. Embodiments of liquid distributed storage control logic may additionally or alternatively implement a data organization adapted to allow the repair policy to avoid handling large objects, instead streaming data into the storage nodes at a very fine granularity.