Abstract:
Techniques are described for determining whether data of a variable for each of a plurality of graphics items is same. If determined that the data is the same, the techniques store the data in a storage location of a specialized shared general purpose register that is associated with the variable.
Abstract:
In one example, a method includes responsive to receiving, by a processing unit, one or more instructions requesting that a first value be moved from a first general purpose register (GPR) to a third GPR and that a second value be moved from a second GPR to a fourth GPR, copying, by an initial logic unit and during a first clock cycle, the first value to an initial pipeline register, copying, by the initial logic and during a second clock cycle, the second value to the initial pipeline register, copying, by a final logic unit and during a third clock cycle, the first value from a final pipeline register to the third GPR, and copying, by the final logic unit and during a fourth clock cycle, the second value from the final pipeline register to the fourth GPR.
Abstract:
A SIMD processor may be configured to determine one or more active threads from a plurality of threads, select one active thread from the one or more active threads, and perform a divergent operation on the selected active thread. The divergent operation may be a serial operation.
Abstract:
A GPU may be configured to detect and nullify unnecessary instructions. Nullifying unnecessary instructions include overwriting a detected unnecessary instruction with a no operation (NOP) instruction. In another example, nullifying unnecessary instructions may include writing a value to a 1-bit instruction memory. Each bit of the 1-bit instruction memory may be associated with a particular instruction of the draw call. If the 1-bit instruction memory has a true value (e.g., 1), the GPU is configured to not execute the particular instruction.
Abstract:
Systems and techniques are disclosed for general purpose register dynamic allocation based on latency associated with of instructions in processor threads. A streaming processor can include a general purpose registers configured to stored data associated with threads, and a thread scheduler configured to receive allocation information for the general purpose registers, the information describing general purpose registers that are to be assigned as persistent general purpose registers (pGPRs) and volatile general purpose registers (vGPRs). The plurality of general purpose registers can be allocated according to the received information. The streaming processor can include the general purpose registers allocated according to the received information, the allocated based on execution latencies of instructions included in the threads.
Abstract:
At least one processor may emulate a fused multiply-add operation for a first operand, a second operand, and a third operand. The at least one processor may determine an intermediate value based at least in part on multiplying the first operand with the second operand, determine at least one of an upper intermediate value or a lower intermediate value, wherein determining the upper intermediate value comprises rounding, towards zero, the intermediate value by a specified number of bits, and wherein determining the lower intermediate value comprises subtracting the intermediate value by the upper intermediate value, determine an upper value and a lower value based at least in part on adding or subtracting the third operand to one of the upper intermediate value or the lower intermediate value, and determine an emulated fused multiply-add result by adding the upper value and the lower value.
Abstract:
A device includes a memory, and at least one programmable processor configured to determine, for each warp of a plurality of warps, whether a Boolean expression is true for a corresponding thread of each warp, pause execution of each warp having a corresponding thread for which the expression is true, determine a number of active threads for each of the plurality of warps for which the expression is true, sort the plurality of warps for which the expression is true based on the number of active threads in each of the plurality of warps, swap thread data of an active thread of a first warp of the plurality of warps with thread data of an inactive thread of a second warp of the plurality of warps, and resume execution of the at least one of the plurality of warps for which the expression is true.
Abstract:
Techniques are described to perform a shuffle operation. Rather than using an all-lane to all-lane cross bar, a shuffler circuit having a smaller cross bar is described. The shuffler circuit performs the shuffle operation piecewise by reordering data received from processing lanes and outputting the reordered data.
Abstract:
A SIMD processor may be configured to determine one or more active threads from a plurality of threads, select one active thread from the one or more active threads, and perform a divergent operation on the selected active thread. The divergent operation may be a serial operation.
Abstract:
A texture unit of a graphics processing unit (GPU) may receive a texture data. The texture unit may receive the texture data from the memory. The texture unit may also multiply, by a multiplier circuit of the texture unit, the texture data by at least one constant, where the constant is not associated with a filtering operation, and where the texture data comprises at least one texel. The texture unit may also output, by the texture unit, a result of multiplying the texture data by the at least one constant.