Abstract:
A package may include a die proximate to a structure having a substrate with interconnects and a first component coupled to the interconnects. The die may be face up or face down. The package may include a first redistribution layer coupling the die to the interconnects of the structure and a mold compound covering the die and maybe the structure.
Abstract:
An integrated package may be manufactured in a die face up orientation with a component proximate to the attached die by creating a cavity in the mold compound during fabrication. The cavity is created with an adhesive layer on the bottom to hold a component such that the top surface of the component is co-planar with the top surface of the attached die. This may allow backside grinding to take place that will not damage the component because the top surface alignment between the attached die and the component prevents the depth of the cavity from extending into the portion of the package that is ground away.
Abstract:
Some implementations provide a semiconductor device (e.g., die, wafer) that includes a substrate, metal layers and dielectric layers coupled to the substrate, a pad coupled to one of the several metal layers, a first metal redistribution layer coupled to the pad, an under bump metallization (UBM) layer coupled to the first metal redistribution layer. The semiconductor device includes several crack stopping structures configured to surround a bump area of the semiconductor device and a pad area of the semiconductor device. The bump area includes the UBM layer. The pad area includes the pad. In some implementations, at least one crack stopping structure includes a first metal layer and a first via. In some implementations, at least one crack stopping structure further includes a second metal layer, a second via, and a third metal layer. In some implementations, at least one crack stopping structure is an inverted pyramid crack stopping structure.
Abstract:
A semiconductor device is provided that has a redistribution layer with reduced resistance. The semiconductor device comprises a plurality of bonding pads on a substrate, a redistribution layer coupled to the bonding pads through a plurality of vias, a dielectric layer over the redistribution layer, that includes an opening that exposes a portion of the redistribution layer. The bonding pads are at least partially under the opening.
Abstract:
Some implementations provide a semiconductor device (e.g., die, wafer) that includes a substrate, metal layers and dielectric layers coupled to the substrate, a pad coupled to one of the several metal layers, a first metal redistribution layer coupled to the pad, an under bump metallization (UBM) layer coupled to the first metal redistribution layer. The semiconductor device includes several crack stopping structures configured to surround a bump area of the semiconductor device and a pad area of the semiconductor device. The bump area includes the UBM layer. The pad area includes the pad. In some implementations, at least one crack stopping structure includes a first metal layer and a first via. In some implementations, at least one crack stopping structure further includes a second metal layer, a second via, and a third metal layer. In some implementations, at least one crack stopping structure is an inverted pyramid crack stopping structure.