Abstract:
A communication device includes a resource allocation module to allocate coax resources for signals to be transmitted over a cable plant and a coax physical layer device to transmit the signals over the cable plant using the allocated coax resources. The communication device also includes a media access controller, coupled to the multi-point control protocol implementation and the coax physical layer device, to provide to the coax physical layer device a bitstream that includes data for the signals and also includes information specifying the allocated coax resources.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving QoE in RAN congestion. In one example, a communications device is equipped to indicate a quality control indicator (QCI) for each of a plurality of applications that communicate with a RAN over a bearer, receive information regarding modification of the bearer or additional bearers based on the QCIs, and modify the bearer or additional bearers according to the information to achieve a desired QoE for at least one of the plurality of applications. In another example, a RAN is equipped to receive a QCI for each of a plurality of applications related to a bearer from a UE, and modify the bearer or adding additional bearers for communicating with the UE based on the QCI for each of the plurality of applications to improve QoE at the UE.
Abstract:
Methods and apparatus for selectively setting a network allocation vector for a subset of stations as disclosed. A method of reserving access to wireless communication medium for a plurality of wireless devices includes, transmitting a message including a first indication for a first subset of wireless devices of the plurality of wireless devices to set a network allocation vector (NAV) and further includes a second indication for a second subset of wireless devices of the plurality wireless devices to not set the NAV, so as to reserve access to the wireless medium for at least the second subset of the plurality of wireless devices.
Abstract:
In an aspect, methods and apparatus of communication include detecting a channel reselection condition for triggering reselection from a current channel to a first potential channel. The methods and apparatus further include determining that a first timer value meets or exceeds a first timer threshold value based at least in part on detecting the channel reselection condition. Additionally, the methods and apparatus include selecting the first potential channel from a channel list when the first timer value meets or exceeds the first timer threshold value. In another aspect, methods and apparatus include detecting an initial channel selection condition for triggering selection of a first initial channel. The methods and apparatus further include forming a channel list including one or more channels based on one or more channel selection parameters. Additionally, the methods and apparatus include selecting the first initial channel from the channel list.
Abstract:
A coax line terminal (CLT) transmits allocations of upstream bandwidth to a plurality of coax network units (CNUs). In response to the allocations, the CLT receives frames with data in a plurality of physical resource blocks that each correspond to a distinct set of subcarriers. The plurality of physical resource blocks includes a first group of physical resource blocks that all have a first constant allowed capacity. Sizes and modulation orders of respective physical resource blocks in the first group vary as defined by a first modulation profile. The data in the first group are received from one or more CNUs that are assigned the first modulation profile.
Abstract:
A fiber-coax unit (FCU) is coupled to an optical line terminal (OLT) and a plurality of coax network units (CNUs). The FCU receives a multicast frame from the OLT. The multicast frame includes a first multicast logical link identifier (LLID) dedicated for multicast traffic directed to CNUs. The FCU replaces the first multicast LLID in the multicast frame with a second multicast LLID corresponding to one or more multicast groups that include at least one CNU of the plurality of CNUs. The FCU transmits the multicast frame to the plurality of CNUs.
Abstract:
A coax line terminal includes a first media access controller (MAC) corresponding to a first group of coax network units and a second MAC corresponding to a second group of coax network units. The coax line terminal also includes a first physical media entity (PME), coupled to the first MAC, to generate signals for transmission in a first frequency band, and a second PME, coupled to the first and second MACs, to generate signals for transmission in a second frequency band. The coax line terminal further includes a PME multiplexer to control access of the first and second MACs to the second PME.
Abstract:
A method, an apparatus, and a computer program product for wireless communication are provided in connection with improving QoE in RAN congestion. In one example, a communications device is equipped to indicate a quality control indicator (QCI) for each of a plurality of applications that communicate with a RAN over a bearer, receive information regarding modification of the bearer or additional bearers based on the QCIs, and modify the bearer or additional bearers according to the information to achieve a desired QoE for at least one of the plurality of applications. In another example, a RAN is equipped to receive a QCI for each of a plurality of applications related to a bearer from a UE, and modify the bearer or adding additional bearers for communicating with the UE based on the QCI for each of the plurality of applications to improve QoE at the UE.
Abstract:
The present disclosure presents a method and apparatus for identifying an access point (AP) for selection by an access terminal (AT). For example, the method may include receiving a probe request by one or more APs from an AT, wherein the probe request is broadcasted by the AT to the one or more APs, generating load information and Received Signal Strength Indicator (RSSI) values of the probe request at the one or more APs, identifying an AP of the one or more APs for selection by the AT, wherein the AP for selection by the AT is identified by the one or more APs based at least on the load information and RSSI values generated at the one or more APs, and transmitting information of an AP identified by the one or more APs to the AT. As such, an improved mechanism for selecting an access point may be achieved.
Abstract:
In a method of scheduling frames, a first channel of a plurality of channels is selected for a first frame. The first frame is sent across a media-independent interface to a physical-layer device for transmission on the first channel. A data rate of the media-independent interface is greater than a data rate of the physical-layer device for the first channel. After the first frame is sent across the media-independent interface, subsequent sending of frames for the first channel across the media-independent interface is disabled for a period of time that is based at least in part on rate adaption from the data rate of the media-independent interface to the data rate of the physical-layer device for the first channel.