Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may update a noise estimation (e.g., a noise covariance matrix, a log likelihood ratio (LLR) scaling, or both) for communications with a serving base station to account for interference from a neighboring base station operating according to a different radio access technology (RAT). For example, the UE may identify a transmission status of a base station operating according to a first RAT, such as long term evolution (LTE), that shares a radio frequency spectrum with a serving base station operating according to a second RAT, such as new radio (NR). The UE may measure the interference from the LTE base station and may update a noise estimation according to the measured interference. The UE and the serving base station may communicate based on the updated noise estimation.
Abstract:
Methods, systems, and devices for wireless communications are described. A user equipment (UE) may use a measurement procedure for beam detection within an existing cell. The UE perform a search procedure for a first synchronization signal block (SSB) to detect a first beam of a base station. The UE may determine a first timing offset for the first SSB based on the search procedure. The UE may estimate a second timing offset for a second SSB from the base station based on the first timing offset. The UE may perform a measurement procedure for the second SSB to detect a second beam of the base station based on the second timing offset. The UE may prune fake beams based on synchronization signals used for the measurement procedure.
Abstract:
Systems, methods, apparatuses, and computer-readable storage media for communicating a base station signal, such as a data signal, a control signal, or both, from a base station to a user equipment (UE) during a measurement window. In some aspects, the UE signals its availability corresponding to a measurement window to a serving base station. In some aspects, the UE signals a guard period associated with the measurement window to the serving base station. In other aspects, the serving base station signals a guard period to the UE.
Abstract:
Methods, systems, and devices for wireless communication are described. A wireless device may transmit and receive signals using radio frequency (RF) chains associated with multiple radios configured for different radio access technologies (RATs). The wireless device may determine a signal of interest for each physical antenna of a set of RF chains associated with a RAT used to receive a desired signal. RF chains of the wireless device may be mapped to a virtual antenna configuration, which may be used to mitigate interference and subsequently process the desired receive signal. A determined interference channel may be used along with the determined signal of interest to map the RF chains to the virtual antenna configuration.
Abstract:
In a method of scheduling frames, a first channel of a plurality of channels is selected for a first frame. The first frame is sent across a media-independent interface to a physical-layer device for transmission on the first channel. A data rate of the media-independent interface is greater than a data rate of the physical-layer device for the first channel. After the first frame is sent across the media-independent interface, subsequent sending of frames for the first channel across the media-independent interface is disabled for a period of time that is based at least in part on rate adaption from the data rate of the media-independent interface to the data rate of the physical-layer device for the first channel.
Abstract:
A method of registering a coax network unit (CNU) in a network is performed at an optical-coax unit (OCU). In the method, a first discovery message is broadcasted to a plurality of CNUs. In response, a first registration request is received from a first CNU of the plurality of CNUs. In response to the first registration request, a proxy entity corresponding to the first CNU is implemented in the OCU. A second discovery message is received from an optical line terminal (OLT). In response to the second discovery message, a second registration request is transmitted to the OLT requesting registration of the proxy entity with the OLT.
Abstract:
Methods and apparatus for selectively setting a network allocation vector for a subset of stations. In one aspect, a method of reserving access to wireless communication medium for a plurality of wireless devices, comprising: transmitting a message including a first indication for a first subset of wireless devices of the plurality of wireless devices to set a network allocation vector (NAV) and further including a second indication for a second subset of wireless devices of the plurality wireless devices to not set the NAV, thereby reserving access to the wireless medium for at least the second subset of the plurality of wireless devices.
Abstract:
An apparatus may be configured to obtain one or more of data or at least one signal associated with at least one first matrix, where the at least one first matrix is at least one square matrix; perform a decomposition process on the at least one first matrix to obtain at least one first triangular matrix; estimate an inverse of the at least one first triangular matrix based on the at least one second triangular matrix; calculate an inverse of the at least one first matrix based on at least one of (1) the estimated inverse of the at least one second triangular matrix, or (2) the estimated inverse of the at least one first triangular matrix; and transmit one or more of the data or the at least one signal based on the calculated inverse of the at least one first matrix.
Abstract:
Transfer of Multimedia Broadcast/Multicast Services (MBMS) over a Single Frequency Network (MBSFN) service and idle mode unicast service for a mobile entity from a source base station to a target base station may be managed by a base station or mobile entity of a cellular wireless communications system (WCS). Operations related to the transfer may include obtaining an MBMS status of the mobile entity, and/or obtaining MBMS support information for the base station. A network entity may facilitate MBMS discovery by a mobile entity, by transmitting a data element to the mobile entity including service identifiers mapped to corresponding cell identifiers to indicate respective MBMS services to be broadcast in an WCS area on adjacent cells identified by respective ones of the cell identifiers. The MBMS services may be broadcast within the WCS area using the adjacent cells previously indicated in the data element.
Abstract:
Methods and apparatuses are provided for facilitating dynamic measurement power offset adjustments for use in reporting channel quality feedback. A user equipment may generate and send a plurality of channel quality indicator (CQI) values to a base station. The base station determines whether at least some of the received CQI values are outside of an upper or lower threshold value. If at least some of the received CQI values are outside the upper or lower threshold value, the base station can transmit an adjusted measurement power offset to the user equipment. On receipt of the adjusted measurement power offset, the user equipment generates subsequent CQI values using the adjusted measurement power offset.