Abstract:
An apparatus is provided. The apparatus includes a calibration circuit configured to generate a reference signal and at least one differential circuit each being configured to operate at a calibrated transconductance over process or condition variations based on the reference signal. The calibration circuit may be configured to generate the reference signal independent of the at least one differential circuit. A method for operating at least one differential circuit is provided. The method includes generating a reference signal and operating the at least one differential circuit at a calibrated transconductance or gain over process or condition variations based on the reference signal. The reference signal may be generated independently of the at least one differential circuit.
Abstract:
A common mode voltage level shifting circuit including: input nodes configured to receive a differential signal with a first common mode voltage, a pair of shunt capacitors coupled between the input nodes and a corresponding pair of output nodes, a threshold voltage circuit, including the output nodes, coupled to the differential signal though the shunt capacitors, the threshold voltage circuit configured to provide a second common mode voltage for the differential signal at the output nodes, and current sources that are controlled according to a level of the first common mode voltage, the current sources coupled to the output nodes to effect the second common mode voltage.
Abstract:
A driver circuit for transmitting serial data on a communication link combines voltage-mode and current-mode drivers. The driver circuit uses a voltage-mode driver as the main output driver. One or more auxiliary current-mode drivers are connected in parallel with the voltage-mode driver to adjust the output signal by injecting currents into the outputs. The voltage-mode driver supplies most of the output drive. Thus, the output driver circuit can provide the power efficiency benefits associated with voltage-mode drivers. The current-mode drivers can provide, for example, pre-emphasis, level adjustment, skew compensation, and other modifications of the output signals. Thus, the driver circuit can also provide the signal adjustment abilities associated with current-mode drivers.
Abstract:
A data transmitter includes: a plurality of parallel driver slices, a first slice of the plurality of parallel driver slices having a first signal generator circuit with a first transistor coupled to a data signal and in series with a second transistor coupled to a first bias signal; and a first bias circuit including a third transistor and a fourth transistor in series with a first current source, the first bias circuit further including a first operational amplifier (op amp) having a first input coupled to a first reference voltage and a second input coupled between the fourth transistor and the first current source, an output of the first op amp configured to provide the first bias signal to the second transistor and to the third transistor.
Abstract:
A clock system including: an in-phase clock input and an in-phase clock output; a quadrature clock input and a quadrature clock output; a control loop configured to receive the in-phase clock output and the quadrature clock output, the control loop including a Boolean logic gate coupled to an operational amplifier (op-amp) through a low-pass filter; and an analog delay element coupled between the quadrature clock input and the quadrature clock output, the analog delay element comprising a plurality of capacitors.
Abstract:
Systems and methods for adjusting a phase step size of a clock data recover (CDR) circuit are described according to aspects of the present disclosure. In certain aspects, a method for adjusting a phase step size of a CDR circuit includes sensing a frequency offset of the CDR circuit, and adjusting the phase step size of the CDR circuit based on the sensed frequency offset. The frequency offset may be sensed by sensing a signal level on an integration path of a loop filter of the CDR circuit. The phase step size of the CDR circuit may be adjusted by switching the CDR circuit between a first phase step size and a second phase step size using a modulator (e.g., a sigma-delta modulator).
Abstract:
In one embodiment, a receiver comprises a differential common-gate amplifier having a differential input and a differential output, wherein the differential input comprises a first input and a second input, and the differential common-gate amplifier is configured to amplify an input differential signal at the differential input into an amplified differential signal at the differential output. The receiver also comprises a common-mode voltage sensor configured to sense a common-mode voltage of the input differential signal, a replica circuit configured to generate a replica voltage that tracks a direct current (DC) voltage at at least one of the first and second inputs, and a comparator configured to compare the sensed common-mode voltage with the replica voltage, and to adjust a first bias voltage input to the differential common-gate amplifier based on the comparison, wherein the DC voltage depends on the first bias voltage.
Abstract:
A common mode voltage level shifting circuit including: input nodes configured to receive a differential signal with a first common mode voltage, a pair of shunt capacitors coupled between the input nodes and a corresponding pair of output nodes, a threshold voltage circuit, including the output nodes, coupled to the differential signal though the shunt capacitors, the threshold voltage circuit configured to provide a second common mode voltage for the differential signal at the output nodes, and current sources that are controlled according to a level of the first common mode voltage, the current sources coupled to the output nodes to effect the second common mode voltage.
Abstract:
Techniques for converting a signal from a small-signal format into a rail-to-rail format are described herein. In one embodiment, a receiver comprises a voltage-level shifter configured to shift a common-mode voltage of a differential signal to obtain a level-shifted differential signal, an amplifier configured to amplify the level-shifted differential signal into an amplified differential signal, and a driver stage configured to convert the amplified differential signal into a rail-to-rail signal. The receiver also comprises a common-mode feedback circuit configured to generate a feedback voltage that is proportional to an output common-mode voltage of the amplifier, and to generate a bias voltage for input to the amplifier based on a difference between the feedback voltage and a reference voltage, wherein the output common-mode voltage of the amplifier depends on the bias voltage.
Abstract:
A distribution current is split into a first control current, a second control current, and a third control current, in an apportionment according to a distribution command. A first control voltage is generated in response to the third control current. A second control voltage is generated as indication of the first control current, and a third control voltage is generated as indication of the second control current. Optionally, de-emphasis contribution of a first driver, a second driver and a third driver to an output is controlled based, at least in part, on the first control voltage, the second control voltage and the third control voltage, respectively.