Abstract:
One feature pertains to an apparatus that includes a first stage track and hold circuit that subsamples a receive equalizer output of a receive equalizer, and a second stage track and hold circuit that generates a first signal representative of an average voltage value of a logical value at the receive equalizer output when a high frequency bit pattern is detected, and a second signal representative of an average voltage value of the logical value at the receive equalizer output when a steady state bit pattern is detected. The apparatus further includes a comparator circuit that generates a comparator output signal that indicates which of the first signal and the second signal has a greater magnitude, and a processing circuit that generates equalizer tuning signals based on the comparator output signal to adjust parameters of an equalizer that affects the receive equalizer output.
Abstract:
A low-pass filter circuit is described. The low-pass filter circuit includes a pseudo-resistor. The pseudo-resistor includes at least one metal-oxide-semiconductor field-effect transistor. The at least one metal-oxide-semiconductor field-effect transistor receives a digital power supply domain signal. The low-pass filter circuit also includes a capacitor. The capacitor is coupled to the pseudo-resistor. The capacitor provides a filtered signal. The low-pass filter circuit may pass digital signal transitions and provide low-pass filtering when there is no signal transition.
Abstract:
In certain aspects, a serial-to-parallel converter includes multiple cascaded stages configured to convert a serial data stream into multiple parallel data signals, wherein each of the stages includes one or more demultiplexers. The serial-to-parallel converter also includes demultiplexer control circuits, wherein each of the demultiplexer control circuits is coupled to the one or more demultiplexers of a respective one of the stages, and a pattern detector coupled to the demultiplexer control circuits.
Abstract:
Multi-phase clock generation employing phase error detection between multiple delay circuit outputs in a controlled delay line to provide error correction is disclosed. A multi-phase clock generator is provided that includes a controlled delay line and a phase error detector circuit. Tap nodes are provided from outputs of one or more delay circuits in the controlled delay line. To detect and correct for phase errors in the controlled delay line, a phase detection circuit is provided that includes at least two phase detectors each configured to measure a phase offset error between tap nodes from the delay circuit(s) in the controlled delay line. These phase errors are then combined to create an error correction signal, which is used to control the delay of the delay circuit(s) in the controlled delay line to lock the phase of the output of the final delay circuit to an input reference clock signal.
Abstract:
A fast frequency hopping implementation in a phase lock loop (PLL) circuit achieves a PLL lock to a new frequency in a very short period of time. In one instant, frequency allocation at a transceiver is changed. In response, a local oscillator frequency hops to a new center frequency based on the changed frequency allocation. The hopping to the new center frequency is based on two-point modulation of a phase locked loop.
Abstract:
An ionic current sensor array includes a master bias generator and a plurality of sensing cells. The master bias generator is configured to generate a bias voltage. Each sensing cell includes an ionic current sensor, an integrating capacitor, a sense transistor coupled between the integrating capacitor and the ionic current sensor, and an amplifier coupled to provide a reference voltage to bias the ionic current sensor. The amplifier includes a first transistor and a second transistor. The first transistor is coupled to receive the bias voltage, and the second transistor is coupled to the first transistor to provide the reference voltage to the ionic current sensor. The second transistor is also coupled between a source of the sense transistor and the gate of the sense transistor.
Abstract:
One feature pertains to a digitally controlled oscillator (DCO) that comprises a variable capacitor and noise reduction circuitry. The variable capacitor has a variable capacitance value that controls an output frequency of the DCO. The variable capacitance value is based on a first bank capacitance value provided by a first capacitor bank, a second bank capacitance value provided by a second capacitor bank, and an auxiliary bank capacitance value provided by an auxiliary capacitor bank. The noise reduction circuitry is adapted to adjust the variable capacitance value by adjusting the auxiliary bank capacitance value while maintaining at least one of the first bank capacitance value and/or the second bank capacitance value substantially unchanged. Prior to adjusting the variable capacitance value, the noise reduction circuitry may determine that a received input DCO control word transitions across a capacitor bank sensitive boundary.
Abstract:
A delay-locked loop (DLL) is provided that includes both a first delay line and a second delay line. The delay-locked loop functions to synchronize a DLL output clock signal relative to a received clock signal using the first delay line while a phase difference between the received clock signal and a received data signal corresponds to a delay within an operating range for the first delay line. As the phase difference increases to force the first delay line out of its operating range, the delay-locked loop transitions to using the second delay line to synchronize the DLL output clock signal relative to the received clock signal.
Abstract:
A transmitter includes a delta-sigma modulator characterized by a noise transfer function having a multitude of zeroes positioned substantially near a frequency band of a receive signal. The transmitter further includes, in part, a multi-phase digital-to-analog (DAC) converter converting an output signal of the delta-sigma modulator to an analog signal. The DAC is characterized by a transfer function that passes the desired signal to its output and attenuates a multitude of images of the sampling clock signal. The transmitter transmits at a frequency defined by an odd multiple of a fraction of the sampling clock signal frequency. The DAC includes a number of stages each pair of which is associated with one of the images being attenuated. The delta-sigma modulator includes a multitude of stages each associated with a different one of the zeroes. Each stage of said delta-sigma modulator optionally receives three tap coefficients.