Abstract:
Apparatuses and methods for image sensors with pixels that reduce or eliminate flicker induced by high intensity illumination are disclosed. An example image sensor may include a photodiode, a transfer gate, an anti-blooming gate, and first and second source follower transistors. The photodiode may capture light and generate charge in response, and the photodiode may have a charge capacity. The transfer gate may selectively transfer charge to a first floating diffusion, and the anti-blooming gate may selectively transfer excess charge to a second floating diffusion when the generated charge is greater than the photodiode charge capacity. The first source-follower transistor may be directly coupled to the first floating diffusion by a gate, the first source-follower to selectively output a first signal to a first bitline in response to enablement of a first row selection transistor, and the second source-follower transistor may be capacitively-coupled to the second floating diffusion, the second source-follower to selectively output a second signal to a second bitline in response to enablement of a second row selection transistor.
Abstract:
An image sensor includes a plurality of photodiodes disposed in a semiconductor material between a first side and a second side of the semiconductor material. The image sensor also includes a plurality of hybrid deep trench isolation (DTI) structures disposed in the semiconductor material, where individual photodiodes in the plurality of photodiodes are separated by individual hybrid DTI structures. The individual hybrid DTI structures include a shallow portion that extends from the first side towards the second side of the semiconductor material, and the shallow portion includes a dielectric region and a metal region such that at least part of the dielectric region is disposed between the semiconductor material and the metal region. The hybrid DTI structures also include a deep portion that extends from the shallow portion and is disposed between the shallow portion and the second side of the semiconductor material.
Abstract:
An image sensor includes photodiodes arranged in semiconductor material. Each of the photodiodes is identically sized and is fabricated in the semiconductor material with identical semiconductor processing conditions. The photodiodes are organized into virtual large-small groupings including a first photodiode and a second photodiode. Microlenses are disposed over the semiconductor material with each of microlenses disposed over a respective photodiode. A first microlens is disposed over the first photodiode, and a second microlens is disposed over the second photodiode. A mask is disposed between the first microlens and the first photodiode. The mask includes an opening through which a first portion of incident light directed through the first microlens is directed to the first photodiode. A second portion of the incident light directed through the first microlens is blocked by the mask from reaching the first photodiode. There is no mask between the second microlens and the second photodiode.
Abstract:
A photon detection device includes a single photon avalanche diode (SPAD) disposed in a semiconductor layer. A guard ring structure is disposed in the semiconductor layer surrounding the SPAD to isolate the SPAD. A well region is disposed in the semiconductor layer surrounding the guard ring structure and disposed along an outside perimeter of the photon detection device. A contact region is disposed in the well region only in a corner region of the outside perimeter such that there is no contact region disposed along side regions of the outside perimeter. A distance between an inside edge of the guard ring structure and the contact region in the corner region of the outside perimeter is greater than a distance between the inside edge of the guard ring structure and the side regions of the outside perimeter such that an electric field distribution is uniform around the photon detection device.
Abstract:
A front-side-interconnect (FSI) red-green-blue-infrared (RGB-IR) photosensor array has photosensors of a first type with a diffused N-type region in a P-type well, the P-type well diffused into a high resistivity semiconductor layer; photosensors of a second type, with a deeper diffused N-type region in a P-type well, the P-type well; and photosensors of a third type with a diffused N-type region diffused into the high resistivity semiconductor layer underlying all of the other types of photosensors. In embodiments, photosensors of a fourth type have a diffused N-type region in a P-type well, the N-type region deeper than the N-type region of photosensors of the first and second types.
Abstract:
An image sensor includes a plurality of photodiodes disposed proximate to a frontside of a first semiconductor layer to accumulate image charge in response to light directed into the frontside of the first semiconductor layer. A plurality of pinning wells is disposed in the first semiconductor layer. The pinning wells separate individual photodiodes included in the plurality of photodiodes. A plurality of dielectric layers is disposed proximate to a backside of the first semiconductor layer. The dielectric layers are tuned such that light having a wavelength substantially equal to a first wavelength included in the light directed into the frontside of the first semiconductor layer is reflected from the dielectric layers back to a respective one of the plurality of photodiodes disposed proximate to the frontside of the first semiconductor layer.
Abstract:
Embodiments of the invention relate to a camera assembly including a rear-facing camera and a front-facing camera operatively coupled together (e.g., bonded, stacked on a common substrate). In some embodiments of the invention, a system having an array of frontside illuminated (FSI) imaging pixels is bonded to a system having an array of backside illuminated (BSI) imaging pixels, creating a camera assembly with a minimal size (e.g., a reduced thickness compared to prior art solutions). An FSI image sensor wafer may be used as a handle wafer for a BSI image sensor wafer when it is thinned, thereby decreasing the thickness of the overall camera module. According to other embodiments of the invention, two package dies, one a BSI image sensor, the other an FSI image sensor, are stacked on a common substrate such as a printed circuit board, and are operatively coupled together via redistribution layers.
Abstract:
An imaging device includes a semiconductor substrate having a photosensitive element for accumulating charge in response to incident image light. The semiconductor substrate includes a light-receiving surface positioned to receive the image light. The imaging device also includes a negative charge layer and a charge sinking layer. The negative charge layer is disposed proximate to the light-receiving surface of the semiconductor substrate to induce holes in an accumulation zone in the semiconductor substrate along the light-receiving surface. The charge sinking layer is disposed proximate to the negative charge layer and is configured to conserve or increase an amount of negative charge in the negative charge layer. The negative charge layer is disposed between the semiconductor substrate and the charge sinking layer.
Abstract:
An image sensor includes a first pixel unit horizontally adjacent to a second pixel unit. Each pixel unit includes plurality of photodiodes and a shared floating diffusion region. A first pixel transistor region of the first pixel unit has a plurality of pixel transistors. A second pixel transistor region of the second pixel unit is horizontally adjacent to the first pixel transistor region and also has a plurality of pixel transistors. A transistor layout of the second pixel transistor region is a minor image of a transistor layout of the first pixel transistor region.
Abstract:
A pixel cell includes a photodiode, a storage transistor, a transfer transistor and an output transistor disposed in a semiconductor substrate. The transfer transistor selectively transfers image charge accumulated in the photodiode from the photodiode to the storage transistor. The output transistor selectively transfers the image charge from the storage transistor to a readout node. A first isolation fence is disposed over the semiconductor substrate separating a transfer gate of the transfer transistor from a storage gate of the storage transistor. A second isolation fence is disposed over the semiconductor substrate separating the storage gate from an output gate of the output transistor. Thicknesses of the first and second isolation fences are substantially equal to spacing distances between the transfer gate and the storage gate, and between the storage gate and the output gate, respectively.