Abstract:
A camera module comprises an image sensor and a lens module disposed on the image sensor. The lens module comprises a top glass structure at top of the lens module. The top glass structure includes a first glass substrate, a second glass substrate, and a baffle disposed immediately between the first and the second glass substrates. The top glass structure is an outermost layer of the camera module. The lens module also comprises a bottom glass substrate at bottom of the lens module. The bottom glass substrate is disposed on the image sensor.
Abstract:
An endoscope imager includes a system-in-package and a specularly reflective surface. The system-in-package includes (a) a camera module having an imaging lens with an optical axis and (b) an illumination unit. The system-in-package includes (a) a camera module having an imaging lens with an optical axis and (b) an illumination unit configured to emit illumination propagating in a direction away from the imaging lens, the direction having a component parallel to the optical axis. The specularly reflective surface faces the imaging lens and forming an oblique angle with the optical axis, to deflect the illumination toward a scene and deflect light from the scene toward the camera module.
Abstract:
A hybrid compound lens includes a substrate lens and a resin lens. The substrate lens has a non-planar substrate surface surrounded by a flange having a flange surface bordering the non-planar substrate surface and forming an obtuse angle therewith. The resin lens has a non-planar resin surface adjoining the substrate lens along the non-planar substrate surface. A lens wafer includes a substrate wafer and resin lenses. The substrate wafer has a top surface having non-planar surface features each bordered by a planar region of the top surface and forming an obtuse angle therewith. Each resin lens has a non-planar resin surface adjoining the substrate wafer along a non-planar surface feature. A method for fabricating a wafer-level hybrid compound lens includes depositing a resin portion on a non-planar feature of a side of a substrate. The method also includes forming the resin portion into a lens on the non-planar feature.
Abstract:
An ultra-small camera module with wide field of view includes (a) a wafer-level lens system for forming, on an image plane, an image of a wide field-of-view scene, wherein the wafer-level lens system includes (i) a distal planar surface positioned closest to the scene and no more than 2.5 millimeters away from the image plane in direction along optical axis of the wafer-level lens system, and (ii) a plurality of lens elements optically coupled in series along the optical axis, each of the lens elements having a curved surface, and (b) an image sensor mechanically coupled to the wafer-level lens system and including a rectangular array of photosensitive pixels, positioned at the image plane, for capturing the image, wherein cross section of the ultra-small camera module, orthogonal to the optical axis, is rectangular with side lengths no greater than 1.5 millimeters.
Abstract:
A PCB-mountable lens adapter includes an adapter lens for being a component of an imaging system that has a second field of view different from the first field of view, the imaging system comprising the adapter lens and the camera lens; and an adapter housing for holding the adapter lens and for attaching to a PCB. A method for modifying the field of view of an camera module includes attaching a PCB-mountable lens adapter to a PCB, the PCB-mountable lens adapter including an adapter lens mounted in an adapter housing, the PCB being configured for surface-mounting of the camera module thereto.
Abstract:
A wafer-level method for packaging a plurality of camera modules includes (a) overmolding a first housing material around a plurality of image sensors to produce a first wafer of packaged image sensors, (b) seating a plurality of lens units in the first wafer above the plurality of image sensors, respectively, and (d) overmolding a second housing material over the first wafer and around the lens units to form a second wafer of packaged camera modules, wherein each of the packaged camera modules includes one of the image sensors and one of the lens units, and the second housing material cooperates with the first housing material to secure the lens units in the second wafer.
Abstract:
A method for packaging applies to packaging a plurality of wafer-level lenses. Each wafer-level lens includes (a) a substrate with opposite facing first and second surfaces and (b) a respective lens element on at least one of the first and second surfaces. Each lens element has a lens surface facing away from the substrate. The method includes partially encasing the plurality of wafer-level lenses with a housing material to produce a wafer of packaged wafer-level lenses. In the wafer of packaged wafer-level lenses, the housing material supports each of the plurality of wafer-level lenses by contacting the respective substrate, and the housing is shaped to form a plurality of housings for the plurality of wafer-level lenses, respectively.
Abstract:
A suspended lens system, for imaging a scene, includes (a) a single-piece lens for receiving light from the scene, wherein the single-piece lens includes a concave surface, and (b) a substrate including a side that faces the concave surface, for holding the single-piece lens, wherein the substrate has non-zero optical transmission and contacts only portions of the single-piece lens that are away from the concave surface. A wafer-level method for manufacturing a suspended lens system includes molding a lens array, wherein each lens of the lens array includes a concave surface, and bonding the lens array to a surface of a substrate that has non-zero optical transmission, such that the concave surfaces face the substrate, to form a suspended lens wafer.
Abstract:
A cavity interposer has a cavity, first bondpads adapted to couple to a chip-type camera cube disposed within a base of the cavity at a first level, the first bondpads coupled through feedthroughs to second bondpads at a base of the interposer at a second level; and third bondpads adapted to couple to a light-emitting diode (LED), the third bondpads at a third level. The third bondpads coupled to fourth bondpads at the base of the interposer at the second level; and the second and fourth bondpads couple to conductors of a cable with the first, second, and third level different. An endoscope optical includes the cavity interposer an LED, and a chip-type camera cube electrically bonded to the first bondpads; the LED is bonded to the third bondpads; and a top of the chip-type camera cube and a top of the LED are at a same level.
Abstract:
An electronic camera assembly includes a camera chip cube bonded to camera bondpads of an interposer; at least one light-emitting diode (LED) bonded to LED bondpads of the interposer at the same height as the camera bondpads; and a housing extending from the interposer and LEDs to the height of the camera chip cube, with light guides extending from the LEDs through the housing to a top of the housing. In embodiments, the electronic camera assembly includes a cable coupled to the interposer. In typical embodiments the camera chip cube has footprint dimensions of less than three and a half millimeters square.