摘要:
A comparator is provided. In one embodiment, a method of operating a comparator comprises providing a bias current (920); comparing an input signal and a reference signal to determine a difference signal and an inverted difference signal (930); latching the difference signal and the inverted difference signal to generate a first and second latched signals (950); generating a control signal using at least the first and second latched signals (970); and controlling the bias current in response to the control signal (980), wherein the comparing the input signal and the reference signal (930) is activated and deactivated in response to the controlling the bias current (980). In another embodiment, a comparator comprises a bias circuit (420) configured to provide a bias current; a comparator circuit (430) configured to determine a difference signal and an inverted difference signal by comparing an input signal and a reference signal, wherein the bias current is used to place the comparator circuit (430) in an active mode; a latch circuit (450) configured to latch the difference signal and the inverted difference signal to generate a first and second latched signals; a control circuit (470) configured to generate a control signal using at least the first and second latched signals; and a switch circuit (480) configured to use the control signal to control the bias current to place the comparator circuit (430) in an active mode and an inactive mode,
摘要:
Methods and corresponding systems for calibrating a digital-to-analog converter include selecting first and second code regions in the digital-to-analog converter, wherein the first and second code regions are separated by a boundary. Thereafter a waveform sequence is input into the digital-to-analog converter, wherein the waveform sequence has a zero offset at the boundary. Then a relative compensation value between the first and second code regions is adjusted to reduce a distortion in an output of the digital-to-analog converter. A magnitude of a third harmonic distortion of the waveform sequence can be used to measure distortion in the output. Adjusting the relative compensation can include converting the output of the digital-to-analog converter to a digital sequence, filtering the digital sequence, and measuring a harmonic distortion in the digital sequence.
摘要:
Apparatus for sensing a current across a known resistor comprising a switched capacitor network and an amplifier having an input coupled to an output of the switched capacitor network. The switched capacitor network is configured to sample first and second reference potentials indicating the current. The amplifier is configured to produce first and second amplified potentials at an output of the amplifier based on the first and second reference potentials.
摘要:
A pipelined analog to digital converter (“ADC”) as described herein is capable of processing two or more input channels. The analog input voltages from the multiple channels are concurrently sampled (every other clock phase) using isolated input stages. The outputs of the input stages are concurrently sampled (every other clock phase) by a delay/holding and synchronization (“DHS”) stage. The DHS stage processes the samples using a double sampling technique, generates residual voltage samples (every clock phase), and generates digital outputs for the multiple channels in an alternating manner. The DHS stage provides equal input loading for the input stages, which enhances the performance of the ADC.
摘要:
Embodiments of vehicle-borne radar systems and methods of their operation are provided. The vehicle-borne radar system includes a transmit path and a first receive path. The transmit path is capable of producing a signal for transmission over an air interface (e.g., a frequency modulated continuous wave (FMCW) signal). The receive path includes a continuous-time (CT) sigma delta analog-to-digital converter (ADC), and the receive path is capable of receiving a reflected version of the signal from the air interface, and converting the reflected version along the receive path into a sequence of digital samples using the CT sigma delta ADC. In an embodiment, the transmit path and the receive path are integrated onto a single integrated circuit.
摘要:
An analog-to-digital converter (ADC) includes a continuous time filter, a quantizer, a continuous time digital-to-analog converter, a discrete time DAC, and a switch. The quantizer has an input terminal coupled to the output terminal of the continuous time filter, and a plurality of output terminals. The continuous time DAC has a plurality of input terminals coupled to the plurality of output terminals of the quantizer, and an output terminal. The discrete time DAC has a plurality of input terminals coupled to the plurality of output terminals of the quantizer, and an output terminal. The switch has a first input terminal coupled to the output terminal of the continuous time DAC, a second input terminal coupled to the output terminal of the discrete time DAC, and an output terminal coupled to the input terminal of the continuous time filter.
摘要:
Embodiments of apparatus and methods for applying a gain to an input signal are provided. An embodiment of a switched-capacitor gain stage circuit includes an input node, an output node, an operational amplifier, a correlated-double-sampling portion, a correlated-level-shifting portion, and a switching configuration. The operational amplifier has a first amplifier input, a second amplifier input, and an amplifier output. The correlated-double-sampling portion includes a plurality of sampling capacitors arranged in parallel and selectively coupled between the input node and a central node, and an offset storage capacitor including a first terminal coupled to the first amplifier input. The correlated-level-shifting portion includes a correlated-level-shifting capacitor including a first terminal coupled to the output node. The switching configuration has multiple switches that are controllable sequentially to place the gain stage circuit in a sampling state, an approximate output voltage storage state, a level shifting and gain state, and an output state.
摘要:
Apparatus and methods are provided for converting an analog input signal to a digital output value. A quantization circuit comprises an input node and a comparator array, wherein each comparator of the comparator array is coupled to the input node. A voltage divider arrangement is coupled to the comparator array and configured to establish a respective threshold voltage for each comparator of the comparator array. The comparator array generates a digital code based on the input signal and the respective threshold voltage for each comparator. A control node is coupled to the voltage divider arrangement, wherein the control node and the voltage divider arrangement are cooperatively configured to adjust the threshold voltage for at least one comparator of the comparator array in response to a control signal at the control node.
摘要:
Apparatus and methods are provided for overload recovery in high order sigma-delta feedback topologies. An apparatus is provided for an analog-to-digital converter. The analog-to-digital converter comprises a first integrator having a first input, wherein the first integrator is configured to produce a first integrated output. A first switched resistance element is coupled between the first input and the first integrated output, wherein the first integrated output is altered when the first switched resistance element is activated. A quantizer is coupled to the first integrated output, the quantizer having a digital output wherein the quantizer converts the first integrated output to a digital value. A digital-to-analog converter is coupled between the digital output and the first input, wherein the digital-to-analog converter converts the digital value to an analog value.
摘要:
A double sampled switched capacitor architecture as described herein includes an amplifier having two separate inputs corresponding to two separate amplifier sections. The amplifier uses a first differential transistor pair for the first amplifier section, a second differential transistor pair for the second amplifier section, a first tail current bias arrangement for the first differential transistor pair, and a second tail current bias arrangement for the second differential transistor pair. The tail current bias arrangements are driven by a bias switching architecture that alternately activates one tail current bias arrangement while at least partially deactivating the other tail current bias arrangement. The amplifier and bias switching architecture cooperate to eliminate gain error that would otherwise be caused by a common parasitic capacitance shared by a single amplifier section.