Abstract:
A sequential circuit arrangement and method are provided in which a latch input signal and a latched version of the input signal are compared to derive a difference signal. This difference signal can detect when changes in the input are not propagated to the output. A second logic gate arrangement derives an error signal from the product of difference signal and a delayed version of the difference signal. This means that normal operation of the circuit is not detected as an error—only when the latched output fails to follow the input after the normally expected delay is the error signal created. The latch element output or an inverted version of the latch element output is selected in dependence on the error signal.
Abstract:
An apparatus comprising an authentication processor configured to, based on received firmware and predetermined cryptographic authentication information, provide for cryptographic based authentication of the received firmware to control execution of the received firmware by any one of a plurality of processors. Each processor of the plurality of processors is uniquely addressable by a boot sequencer.
Abstract:
Embodiments of a device and method are disclosed. In an embodiment, a Controller Area Network (CAN) device includes a security module connected between a CAN bus interface of a CAN transceiver and a microcontroller communications interface of the CAN transceiver and a shield device connected between the CAN bus interface and the microcontroller communications interface. The security module is configured to perform a security function on data traffic received from the CAN bus interface or from a Serial Peripheral Interface (SPI) interface of the microcontroller communications interface. The shield device is configured to direct CAN Flexible Data-rate (FD) traffic received from the CAN bus interface to the security module.
Abstract:
A flip-flop (10) is disclosed comprising a slave latch (30) and a master latch (20). Each of the slave and master latch comprise a pair of cross-coupled logic gates (21, 22, 31, 32). A cross coupling connection of the slave or master latch (30, 20) comprises a resistive element (8, 9, 11, 12) arranged to reduce the sensitivity of the flip-flop (10) to a current injection.
Abstract:
Embodiments of a device and method are disclosed. In an embodiment, an IVN transceiver is disclosed. The IVN transceiver includes an IVN bus interface, a microcontroller communications interface, and a security module connected between the IVN bus interface and the microcontroller communications interface and configured to perform a security function.
Abstract:
Embodiments of a latch circuit and a method of operating a latch circuit are described. In one embodiment, a latch circuit includes an input terminal configured to receive an input data signal, a switching unit configured to control application of the input data signal, a first inverter circuit connected to the switching unit, where the first inverter circuit includes a first cross-coupled pair of inverters, and a second inverter circuit connected to the first inverter circuit through the switching unit. The second inverter circuit includes a second cross-coupled pair of inverters and two transistor devices. Each inverter of the second cross-coupled pair of inverters is connected to a voltage rail through a corresponding transistor device. Each of the two transistor devices is connected to a node that is between the switching unit and the first inverter circuit or the second inverter circuit. Other embodiments are also described.
Abstract:
Aspects of the present disclosure are directed to operating time-based circuitry. As may be implemented in connection with one or more embodiments, an apparatus and or method involved detecting timing characteristics of circuitry operating in respective clock domains, each having a semiconductor body region via which a clock signal path traverses. The respective semiconductor body regions are biased at respective bias levels that are based on the detected timing characteristics of the clock signal path that traverses the semiconductor body region being biased.
Abstract:
A flip-flop (10) is disclosed comprising a slave latch (30) and a master latch (20). Each of the slave and master latch comprise a pair of cross-coupled logic gates (21, 22, 31, 32). A cross coupling connection of the slave or master latch (30, 20) comprises a resistive element (8, 9, 11, 12) arranged to reduce the sensitivity of the flip-flop (10) to a current injection.
Abstract:
A system including: a voltage converter configured to convert a voltage from a power source to a different voltage; a memory coupled to the voltage converter; a digital logic circuit; and a level shifter coupled between the memory and digital logic circuit; wherein leakage current from the memory is stored in a capacitance in the digital logic circuit, wherein the voltage converter is further coupled to a node between the memory and digital logic circuit, and wherein the voltage converter is configured to: monitor a voltage at the node wherein the node has a desired operating voltage value; and adjust the voltage at the node when the voltage at the node varies from the desired operating voltage value.
Abstract:
A tuneable buffer circuit for use in a clock tree has multiple buffers in parallel, each buffer having a grounding function, and also a bypass switch in parallel with the buffers. The circuit has a normal mode of one buffer connected into circuit, a first low voltage mode of multiple buffers connected into circuit in parallel without grounding function, a second low voltage mode of the buffers connected into circuit in parallel with grounding function and a bypass mode.