Abstract:
Disclosed are an intra prediction method of a chrominance block using a luminance sample and an apparatus using the same. An image decoding method comprises the steps of: calculating an intra prediction mode of a chrominance block on the basis of an LM mapping table when the chrominance block uses an LM; and generating a prediction block for the chrominance block on the basis of the calculated intra prediction mode of the chrominance block. When intra prediction mode information of chrominance blocks are decoded, mutually different tables are used depending on whether or not an LM is used, so that encoding and decoding can be performed without an unnecessary waste of bits.
Abstract:
The present invention includes obtaining block type identification information on a partition of the current macroblock when the current macroblock is intra-mixed, specifying a block type of the current macroblock based on the block type identification information, obtaining an intra prediction mode of the current macroblock according to the block type of the partition of the current macroblock, and predicting the current macroblock using the intra prediction mode and a pixel value of a neighboring block.
Abstract:
Disclosed are an intra prediction method of a chrominance block using a luminance sample and an apparatus using the same. An image decoding method comprises the steps of: calculating an intra prediction mode of a chrominance block on the basis of an LM mapping table when the chrominance block uses an LM; and generating a prediction block for the chrominance block on the basis of the calculated intra prediction mode of the chrominance block. When intra prediction mode information of chrominance blocks are decoded, mutually different tables are used depending on whether or not an LM is used, so that encoding and decoding can be performed without an unnecessary waste of bits.
Abstract:
A method and apparatus for decoding a video signal are disclosed. A method for decoding a video signal includes obtaining block type information of a current block, confirming a prediction mode of the current block based on the block type information, obtaining, if the prediction mode of the current block is an intra prediction mode according to the prediction mode, at least one correlation parameter information using at least one neighboring pixel of the current block, obtaining an intra prediction value of the current block using the correlation parameter information, and reconstructing the current block using the intra prediction value of the current block.
Abstract:
The present invention relates to an entropy decoding method and to a decoding apparatus using same. The entropy decoding method according to the present invention comprises: a step of decoding a bin of a syntax element; and a step of acquiring information on the syntax element based on the decoded bin. In the step of decoding the bin, context-based decoding or bypass decoding is performed for each bin of the syntax element.
Abstract:
The present invention relates to an image information encoding and decoding method and a device for same. One embodiment of an image information encoding method according to the present invention, as an image information encoding method according to another embodiment of the present invention, includes the steps of: generating a restore block; applying a deblocking filter on the restore block; applying a Sample Adaptive Offset (SAO) on the restore block having the deblocking filter applied thereon; and transmitting information on the SAO application. During the applying of the SAO, the SAO is applied to chroma pixels, and during the transmitting of the information, in addition to information on whether the SAO is applied on the chroma pixels, at least one of area information, division information on the SAO coverage area, SAO type information, and SAO offset information is transmitted.
Abstract:
In one embodiment, the method includes predicting at least a portion of a current image in a current layer based on at least a residual coded portion of a base image in a base layer, a reference image, shift information for samples in the predicted current image, and offset information indicating a position offset between at least one boundary pixel of the reference image and at least one boundary pixel of the current image. The residual coded portion represents difference pixel data.
Abstract:
In one embodiment, a method for a moving picture coding system to derive at least one motion vector of a bi-predictive block in a current picture from a motion vector of a first block in a first picture includes selecting, by the moving picture coding system, a list 1 motion vector of the first block in the first picture as a motion vector for deriving list 0 and list 1 motion vectors of the bi-predictive block if the first block only has the list 1 motion vector, the first picture being permitted to be located temporally before the current picture and permitted to be located temporally after the current picture and deriving the list 0 and list 1 motion vectors of the bi-predictive block by applying a bit operation to the selected motion vector.
Abstract:
A method of predicting a motion vector for a current block in a current picture includes obtaining, by a moving picture decoding device, a direction of a reference picture of the current picture, based on a display order of the reference picture and a display order of the current picture, obtaining, by the moving picture decoding device, at least three forward motion vectors for at least three blocks other than the current block based on the direction of the reference picture, wherein the at least three forward motion vectors correspond to the at least three other blocks, respectively, predicting, by the moving picture decoding device, a forward motion vector for the current block by using a median operation of the at least three forward motion vectors and decoding the current block in the current picture using the predicted forward motion vector for the current block.
Abstract:
A block prediction method using improved direct mode for B picture in a moving picture coding system obtains forward and backward motion vectors of direct mode, obtains two distinct motion-compensated blocks using the forward and backward motion vectors, and predicts a block of the B picture which is about to be coded (or decoded) presently by applying an interpolative prediction to the above blocks, and thereby, accuracy of the predicted block can be improved and the coding efficiency also can be improved.