Abstract:
A microscope includes at least one correction unit arranged in a beam path for correcting a variable spherical aberration. The correction unit has at least one optical correction element that is arranged in a convergent or divergent area of the beam path such that the optical correction element is movable along an optical axis. The at least one optical correction element has at least one correction surface. A part of the at least one correction surface through which the convergent or divergent area of the beam path passes forms a correction-effective surface section whose radial extension crosswise to the optical axis is adjustable by moving the correction element along the optical axis.
Abstract:
An illumination device for an optical device, a microscope or a macroscope includes a first illumination source configured to emit light which is directed via an illumination beam path onto an object to be illuminated that is arranged in an object plane. At least one second illumination source is positionable in the illumination beam path, and is transparent or semitransparent as well as self-luminous. The at least one second illumination source is configured to allow light emitted from the first illumination source to pass through at least in part. The object plane having the object to be illuminated is configured to be illuminated both by the first and by the at least one second illumination source.
Abstract:
A microscope immersion objective having a numerical aperture of NA>1.36 includes a front lens group. The front lens group has a first, object-side optical element having a plane parallel plate and a second optical element having a hyper-hemisphere. The plane parallel plate is wrung together with a planar side of the hyper-hemisphere.
Abstract:
An optical assembly includes a lens unit capable of being moved along an optical axis of the optical assembly. The lens unit includes a lens mount for holding at least one lens. The optical assembly further includes a sleeve for receiving the lens mount. The lens mount is in sliding contact with and movable in relation to the sleeve as the lens unit is moved along the optical axis. The lens mount is formed of or comprises at its outer surface a self-lubricating material, and/or the sleeve is formed of or comprises at its inner surface a self-lubricating material.
Abstract:
A microscope system includes a detection unit having a color beam splitter arrangement with three beam splitter prisms, each having first, second and third prism surfaces. The first prism surfaces face in the same direction and are oriented parallel to one another at a right angle to an optical axis. The first and second prism surfaces are oriented in each case at acute angles to one another. The second and third prism surfaces are oriented in each case at right or obtuse angles to one another. The third and first prism surfaces are oriented in each case at acute angles to one another. A prismatic compensation element having first and second prism surfaces is assigned to each prism. The second prism surface of each of the compensation elements is arranged in a common plane with or parallel to the second prism surface of the respectively assigned prism.
Abstract:
An immersion objective lens for a microscope includes a first lens group having positive refractive power, a second lens group having positive refractive power, a third lens group having negative refractive power and a fourth lens group having positive refractive power disposed in this sequence from the object side. The second lens group is moveable along an optical axis so as to achieve a corrective effect with respect to a spherical aberration, such that a sum of a distance between the second lens group and the first lens group and of a distance between the second lens group and the third lens group is constant. The corrective effect of the second lens group is predetermined such that the spherical aberration is minimized for a light incidence that corresponds to a mean numerical aperture that lies between zero and a nominal aperture of the immersion objective lens.
Abstract:
The present invention relates to a microscope illumination system for switching between a first, confocal and a second, non-confocal microscope illumination mode, the system having an illumination unit that, in order to provide the first illumination mode, includes an illumination source for generating an illumination beam propagating parallel to the optical axis; a scanning mirror for deflecting the illumination beam perpendicular to the optical axis; and a scanning eyepiece and a downstream scanning tube lens for imaging the scanning mirror into the back focal plane of a microscope objective and for expanding the illumination beam, the objective focusing the illumination beam onto a specimen to be examined. In order to provide the second illumination mode, the system has a focusing lens inserted into the path of the illumination beam in such a way that the illumination beam is focused into the back focal plane of the microscope objective.
Abstract:
The present invention relates to a microscope illumination system for switching between a first, confocal and a second, non-confocal microscope illumination mode, the system having an illumination unit that, in order to provide the first illumination mode, includes an illumination source for generating an illumination beam propagating parallel to the optical axis; a scanning mirror for deflecting the illumination beam perpendicular to the optical axis; and a scanning eyepiece and a downstream scanning tube lens for imaging the scanning mirror into the back focal plane of a microscope objective and for expanding the illumination beam, the objective focusing the illumination beam onto a specimen to be examined. In order to provide the second illumination mode, the system has a focusing lens inserted into the path of the illumination beam in such a way that the illumination beam is focused into the back focal plane of the microscope objective.