Abstract:
In a method for controlling the positioning of patterns on a substrate in a manufacturing process at least one registration measurement is conducted with a registration tool on at least one pattern formed in at least one layer on the substrate by a previous process step of the manufacturing process. From the registration measurement a position of the at least one pattern in a coordinate system is determined. The determined position of the at least one pattern is fed into an automatic process control of a manufacturing system for controlling a setup of the manufacturing system for a subsequent process step of the manufacturing process. The manufacturing process may be a wafer manufacturing process with a silicon substrate. Complementary information may be collected in addition to performing the registration measurement and fed to the automatic process control. The process steps may for example include lithography steps, etching steps, layer deposition.
Abstract:
Methods and systems for performing measurements of multiple die with an array of electron beam columns are presented herein. The wafer is scanned in a direction parallel to the die rows disposed on the wafer. The electron beam measurement columns are spatially separated in a column alignment direction. The wafer is scanned in a direction that is oriented at an oblique angle with respect to the column alignment direction such that each electron beam column measures the same row of die features on different die during the same wafer pass. The wafer is oriented with respect to the array of electron beam columns by rotating the wafer, rotating the electron beam columns, or both. In further aspects, each measurement beam is deflected to correct alignment errors between each column and the corresponding die row to be measured and to correct wafer positioning errors reported by the wafer positioning system.
Abstract:
A scanning electron microscopy system includes an electron beam source, a sample stage that includes a first alignment feature, an electron-optical column that includes electron-optical elements that include a lens having a second alignment feature, and an alignment plate having a third alignment feature. The system additionally includes a reference target, and a detector assembly. The electron-optical elements configurable to simultaneously focus on a substrate and the reference target. The system also includes a controller communicatively coupled to at least one or more portions of the electron-optical column and the sample stage, to make adjustments in order to align the electron beam to at least one of the first set of alignment features, the second set of alignment features, the third set of alignment features, the reference target or the substrate. The controller also makes adjustments to simultaneously focus the electron beam at a first and second high resolution plane.
Abstract:
A scanning electron microscopy system includes an electron beam source, a sample stage that includes a first alignment feature, an electron-optical column that includes electron-optical elements that include a lens having a second alignment feature, and an alignment plate having a third alignment feature. The system additionally includes a reference target, and a detector assembly. The electron-optical elements configurable to simultaneously focus on a substrate and the reference target. The system also includes a controller communicatively coupled to at least one or more portions of the electron-optical column and the sample stage, to make adjustments in order to align the electron beam to at least one of the first set of alignment features, the second set of alignment features, the third set of alignment features, the reference target or the substrate. The controller also makies adjustments to simultaneously focus the electron beam at a first and second high resolution plane.
Abstract:
An overlay metrology system includes a particle-beam metrology tool to scan a particle beam across an overlay target on a sample including a first-layer target element and a second-layer target element. The overlay metrology system may further include a controller to receive a scan signal from the particle-beam metrology tool, determine symmetry measurements for the scan signal with respect to symmetry metrics, and generate an overlay measurement between the first layer and the second layer based on the symmetry measurements in which an asymmetry of the scan signal is indicative of a misalignment of the second-layer target element with respect to the first-layer target element and a value of the overlay measurement is based on the symmetry measurements.
Abstract:
A method with increased throughput for measuring positions of structures on a substrate is disclosed. The substrate is taken from a load port of a metrology machine and is placed immediately in a stage of the metrology machine. At least two measurement loops are carried out, wherein a first measurement loop is started at a time when a substrate temperature is different from the temperature at the stage, and at least one second measurement loop is started at a time after the first measurement loop when the substrate temperature is different from the temperature at the stage. A model is used to calculate from the measured data, taken while there is a temperature mismatch between the stage and the substrate, a real grid of positions of structures on the substrate, corresponding to a situation where the temperature of the stage matches the temperature of the substrate.
Abstract:
A method with increased throughput for measuring positions of structures on a substrate is disclosed. The substrate is taken from a load port of a metrology machine and is placed immediately in a stage of the metrology machine. At least two measurement loops are carried out, wherein a first measurement loop is started at a time when a substrate temperature is different from the temperature at the stage, and at least one second measurement loop is started at a time after the first measurement loop when the substrate temperature is different from the temperature at the stage. A model is used to calculate from the measured data, taken while there is a temperature mismatch between the stage and the substrate, a real grid of positions of structures on the substrate, corresponding to a situation where the temperature of the stage matches the temperature of the substrate.
Abstract:
An overlay metrology system may measure a first-layer pattern placement distance between a pattern of device features and a pattern of reference features on a first layer of an overlay target on a sample. The system may further measure, subsequent to fabricating a second layer including at least the pattern of device features and the pattern of reference features, a second-layer pattern placement distance between the pattern of device features and the pattern of reference features on the second layer. The system may further measure a reference overlay based on relative positions of the pattern of reference features on the first layer and the second layer. The system may further determine a device-relevant overlay for the pattern of device-scale features by adjusting the reference overlay with a difference between the first-layer pattern placement distance and the second-layer pattern placement distance.
Abstract:
An overlay metrology system includes a particle-beam metrology tool to scan a particle beam across an overlay target on a sample including a first-layer target element and a second-layer target element. The overlay metrology system may further include a controller to receive a scan signal from the particle-beam metrology tool, determine symmetry measurements for the scan signal with respect to symmetry metrics, and generate an overlay measurement between the first layer and the second layer based on the symmetry measurements in which an asymmetry of the scan signal is indicative of a misalignment of the second-layer target element with respect to the first-layer target element and a value of the overlay measurement is based on the symmetry measurements.
Abstract:
The invention discloses a method for measuring positions of structures on a mask and thereby determining mask manufacturing errors. It is shown, that from a plurality measurement sites an influence of an optical proximity effect on a position measurement of structures on the mask, is determined with a metrology tool. A rendered image of the data representation of the structures is obtained. Additionally, at least one optical image of the pattern within the area on the mask is captured with the imaging system of the metrology tool. The field of view of the metrology tool is approximately identical to the size of the selected area of the mask design data. Finally, a residual is determined, which shows the manufacturing based proximity effect.