Abstract:
A nonvolatile semiconductor memory includes a first and a second active area configured to extend in the column direction in parallel; an element isolating region configured to electrically separate the first and the second active area; a plurality of word lines configured to extend in the row direction and be constituted by respective main parts and respective ends; and a plurality of memory cell transistors configured to be disposed on intersections between the respective main parts of the plurality of word lines and the second active area. Each memory cell transistor comprises a gate insulating film, a floating gate electrode, an inter-gate insulating film, and a control gate electrode, constituting a memory cell array; a short-circuit region configured to electrically short circuit the ends of the plurality of word lines; and a trench configured to separate the ends from the main parts of the plurality of word lines.
Abstract:
In a cell capacitor of a dynamic random access memory cell according to the present invention, an insulation film is formed on the surface of a fine trench formed in a silicon semiconductor substrate. A contact hole is formed in the insulation film in a region on the side wall of the trench. A polysilicon film is formed on the side wall of the trench in a hollow-cylindrical shape. A silicon layer is epitaxially and selectively grown on the polysilicon film and on the silicon substrate exposed through the contact hole. The polysilicon film and the silicon layer constitute an information storage electrode. At least the silicon layer of the information storage electrode is electrically connected to a source or a drain region of a transfer transistor of the memory cell. A gate insulation film is formed on the surface of the silicon layer. A counter electrode is formed such that the counter electrode is embedded in the trench.
Abstract:
A first insulation layer is formed on a semiconductor substrate, and a first conductive layer is formed on the first insulation layer. A second insulation layer is formed on the first conductive layer and the first insulation layer, and a first contact hole, having a width greater than that of the first conductive layer, is formed in the second insulation layer, at a position corresponding to the first conductive layer. A second conductive layer, having a width greater than that of the first contact hole, is formed on the second insulation layer and in the first contact hole, and is formed in contact with the upper and side surfaces of the first conductive layer located inside the second contact hole. A third insulation layer is formed on the second conductive layer and the second insulation layer, and a second contact hole, having a width less than that of the second conductive layer, is formed in the third insulation layer, at a position corresponding to the second conductive layer. A third conductive layer, having a width greater than that of the second contact hole but less than that of the second conductive layer, is formed on the third conductive layer and in the second contact hole. The first conductive layer is electrically connected to the third conductive layer.
Abstract:
The present invention provides a fullerene derivative having an electron donating group adjacent to the fullerene nucleus, represented by formula (I) which exhibits a high LUMO energy and a high open circuit voltage based thereon and which is highly compatible with polymers and excellent in charge mobility and charge separation ability: wherein the encircled FL represents fullerene C60 or C70, Donor-Sub represents a substituent having at least one electron donating substituent atom located at a position apart from the fullerene nucleus by two bonds, R is hydrogen, Donor-Sub, an alkyl, cycloalkyl, alkoxy, alkoxy-substituted alkyl, alkoxy-substituted alkoxy, alkylthio-substituted alkoxy, alkylthio, alkylthio-substituted alkylthio, or alkoxy-substituted alkylthio group, having a total carbon atoms of 1 or more and 20 or fewer, or a benzyl or phenyl group, and n is an integer of 1 to 10.
Abstract:
A semiconductor device comprising a resistance element with a high resistance and high resistance accuracy and a non-volatile semiconductor storage element is rationally realized by comprising the non-volatile semiconductor storage element comprising a first isolation formed to isolate a first semiconductor area, a first insulator, and a first electrode in a self-aligned manner, and a second electrode, and the resistance element comprising a second isolation formed to isolate a second semiconductor area, a third insulator and a conductor layer in a self-aligned manner, and third and fourth electrodes formed on each end of the conductor layer via a fourth insulator, and connected with the conductor layer. The conductor layer or the third and fourth electrodes include the same material with the first or second electrode, respectively.
Abstract:
A semiconductor device comprising a resistance element with a high resistance and high resistance accuracy and a non-volatile semiconductor storage element is rationally realized by comprising the non-volatile semiconductor storage element comprising a first isolation formed to isolate a first semiconductor area, a first insulator, and a first electrode in a self-aligned manner, and a second electrode, and the resistance element comprising a second isolation formed to isolate a second semiconductor area, a third insulator and a conductor layer in a self-aligned manner, and third and fourth electrodes formed on each end of the conductor layer via a fourth insulator, and connected with the conductor layer. The conductor layer or the third and fourth electrodes include the same material with the first or second electrode, respectively.
Abstract:
The invention provides a titanium composite material comprising a bonded laminate having a layer of macromolecular material bonded to the modified surface of a titanium sheet or a titanium alloy sheet, and a process for preparing a titanium composite material, the process comprising the step of bonding a macromolecular material to a titanium sheet or a titanium alloy sheet having a modified surface to be bonded.
Abstract:
Provided is a method for modifying one surface of a textile fabric or a nonwoven fabric, which comprises coating a sizing agent inactive to plasma treatment on one surface of a hydrophobic or hydrophilic textile fabric or nonwoven fabric, subjecting another surface of the textile fabric or the nonwoven fabric to low-temperature plasma treatment to form an active seed for a graft polymerization reaction, then graft-polymerizing this active seed with a polymerizable monomer, and thereafter removing the sizing agent coated on one surface of the textile fabric or the nonwoven fabric. Clothing in which sweat given in sports or the like can easily be shifted from one surface to another thereof and can easily be evaporated and which has wash and wear properties is obtained.
Abstract:
A semiconductor body has a first and a second element formation surface. The semiconductor body is constructed in such a manner that a first semiconductor substrate, which has a first main surface at which the plane appears, is laminated to a second semiconductor substrate, which has a second main surface at which the plane appears. Made in the first semiconductor substrate is at least one opening at which the second main surface of the second semiconductor substrate. The first main surface of the first semiconductor substrate becomes the first element formation surface of the semiconductor body, and the second main surface of the second semiconductor substrate becomes the second element formation surface of the body.
Abstract:
The present invention provides a fullerene derivative having an electron donating group adjacent to the fullerene nucleus, represented by formula (I) which exhibits a high LUMO energy and a high open circuit voltage based thereon and which is highly compatible with polymers and excellent in charge mobility and charge separation ability: wherein the encircled FL represents fullerene C60 or C70, Donor-Sub represents a substituent having at least one electron donating substituent atom located at a position apart from the fullerene nucleus by two bonds, R is hydrogen, Donor-Sub, an alkyl, cycloalkyl, alkoxy, alkoxy-substituted alkyl, alkoxy-substituted alkoxy, alkylthio-substituted alkoxy, alkylthio, alkylthio-substituted alkylthio, or alkoxy-substituted alkylthio group, having a total carbon atoms of 1 or more and 20 or fewer, or a benzyl or phenyl group, and n is an integer of 1 to 10.