Abstract:
Some demonstrative embodiments include apparatuses, devices, systems and methods of determining one or more link adaptation parameters. For example, an apparatus may be configured to process a first message from a wireless station, the first message including location information corresponding to a location of the wireless station, and an Access Point (AP) identifier to identify an AP; to query a Location-Based Link Status (LB-LS) database (DB) for radio link information corresponding to the AP and to the location; to determine, based on the radio link information, one or more link adaptation parameters corresponding to a wireless link between the AP and the wireless station at the location; and to send to the wireless station a second message comprising the one or more link adaptation parameters.
Abstract:
Embodiments of the present disclosure describe methods and apparatuses for selective application of cyclic shift diversity in uplink communications of mobile communication systems. Other embodiments may be described and/or claimed.
Abstract:
The disclosure relates to a method and apparatus for leveraging Bluetooth (BT) or Bluetooth low energy (BLE) technologies to conserve energy in multi-mode devices. In one embodiment, the disclosure relates to synchronizing a first wireless platform with a second wireless platform by exchanging Wi-Fi synchronization information through BT packets. Each of the first and the second wireless platforms may have integrated Wi-Fi (or other communication modalities) with a BT radio. In one embodiment of the disclosure, the Wi-Fi communication modes are kept at sleep mode while the BT modalities exchange synchronization information.
Abstract:
This disclosure describes systems, methods, and devices related to using enhanced high efficiency (HE) frames. A device may determine a high efficiency signal-B (HE-SIG-B) field for a high efficiency (HE) frame, the HE-SIG-B field comprising a common information field and a user information field. The device may determine a data portion of the HE frame, wherein the data portion includes one or more resource units (RUs) with a size equal to a number of tones. The device may determine a first resource allocation subfield and a second resource allocation subfield of the common information field based at least in part on the number of tones. The device may cause to send the HE frame.
Abstract:
Methods, apparatus, systems and articles of manufacture are disclosed to generate a management frame identifying an operation mode for a basic service set of a local area network. An example disclosed method includes performing an assessment of a wireless network and determining an operation mode for a basic service set (BSS) bandwidth based on the assessment, the operation mode indicating continuity of a primary segment, a secondary segment, a tertiary segment and a quaternary segment. The example method further includes creating a management frame including information fields based on the BSS bandwidth, the information fields including a first channel width field, a second channel width field, a third channel width field, a first center frequency field, a second center frequency field and a third center frequency field and transmitting the management frame over the wireless network.
Abstract:
This disclosure describes systems, methods, and devices related to using enhanced high efficiency (HE) frames. A device may determine a high efficiency signal-B (HE-SIG-B) field for a high efficiency (HE) frame, the HE-SIG-B field comprising a common information field and a user information field. The device may determine a data portion of the HE frame, wherein the data portion includes one or more resource units (RUs) with a size equal to a number of tones. The device may determine a first resource allocation subfield and a second resource allocation subfield of the common information field based at least in part on the number of tones. The device may cause to send the HE frame.
Abstract:
For example, an apparatus configured to cause a first Wake-Up Radio (WUR) wireless communication station (STA) to exchange a request frame and a response frame with a second WUR STA to set up a plurality of WUR parameters of a WUR mode at which the first WUR STA is to transmit one or more WUR wake-up frames configured for reception by a Wake-Up Receiver (WURx) of the second WUR STA, wherein the request frame is from the second WUR STA to the first WUR STA, and the response frame is from the first WUR STA to the second WUR STA in response to the request frame; to transmit an unsolicited update frame to the second WUR STA to update one or more WUR parameters of the plurality of WUR parameters; and to receive an Acknowledgement (Ack) frame from the second WUR STA to acknowledge the unsolicited update frame.
Abstract:
This disclosure describes systems, methods, and devices related to a flexible connectivity framework. A first device may send a trigger frame to a second device. The first device may then receive an uplink bandwidth resource request from the second device. The first device may detect a high efficiency-long training field (HE-LTF) in the uplink bandwidth resource request. The first device may send an uplink multiuser trigger frame, and the first device may receive an uplink frame from the second device.
Abstract:
Simultaneous dual band operation (2.4 and 5 GHz) is common in APs on the market today, and tri-band devices are expected in the market soon. Link aggregation can also be applicable to multiple air interfaces in the same band (for instance 2 independent IEEE 802.11ac/ax air interfaces at 5 GHz on 2 different 80 MHz channels). One exemplary aspect provides technology that enables significantly higher throughput and/or higher reliability for two stations (STAs) or a STA and the access point (AP) when the devices support simultaneous multi-band operation.
Abstract:
This disclosure describes systems, methods, and devices related to low power wake-up radio beacon signaling. An access point may determine timing information for the transmission of low power wake up radio beacons and send that timing information to a user device. An access point may then send low power wake up radio beacons based on that timing information to a user device, and a user device may receive the low power wake up radio beacons based on the timing information.