Abstract:
A method and apparatus is provided for preparing samples for observation in a charged particle beam system in a manner that reduces or prevents artifacts. An ion beam mills exposes a cross section of the work piece using a bulk mill process. A deposition precursor gas is directed to the sample surface while a small amount of material is removed from the exposed cross section face, the deposition precursor producing a more uniform cross section. Embodiments are useful for preparing cross sections for SEM observation of samples having layers of materials of different hardnesses. Embodiments are useful for preparation of thin TEM samples.
Abstract:
Redeposition of substrate material on a fiducial resulting from charged particle beam (CPB) or laser beam milling of a substrate can be reduced with a shield formed on the substrate surface. The shield typically has a suitable height that can be selected based on proximity of an area to be milled to the fiducial. The shield can be formed with the milling beam using beam-assisted chemical vapor deposition (CVD). The same or different beams can be used for milling and beam-assisted CVD.
Abstract:
Techniques are described that facilitate automated extraction of lamellae and attaching the lamellae to sample grids for viewing on transmission electron microscopes. Some embodiments of the invention involve the use of machine vision to determine the positions of the lamella, the probe, and/or the TEM grid to guide the attachment of the probe to the lamella and the attachment of the lamella to the TEM grid. Techniques that facilitate the use of machine vision include shaping a probe tip so that its position can be readily recognized by image recognition software. Image subtraction techniques can be used to determine the position of the lamellae attached to the probe for moving the lamella to the TEM grid for attachment. In some embodiments, reference structures are milled on the probe or on the lamella to facilitate image recognition.
Abstract:
To reduce artifacts in a surface exposed by a focused ion beam for viewing, a trench is milled next to the region of interest, and the trench is filled to create a bulkhead. The ion beam is directed through the bulkhead to expose a portion of the region of interest for viewing. The trench is filled, for example, by charged particle beam-induced deposition. The trench is typically milled and filled from the top down, and then the ion beam is angled with respect to the sample surface to expose the region of interest.
Abstract:
A TEM grid provides posts having steps, the steps increasing the number of samples that can be attached to the grid. In some embodiments, each post includes a one sided stair step configuration. A method of extracting multiple samples includes extracting samples and attaching the samples to the different stair steps on the posts.
Abstract:
A method for analyzing a sample with a charged particle beam including directing the beam toward the sample surface; milling the surface to expose a second surface in the sample in which the end of the second surface distal to ion source is milled to a greater depth relative to a reference depth than the end of the first surface proximal to ion source; directing the charged particle beam toward the second surface to form one or more images of the second surface; forming images of the cross sections of the multiple adjacent features of interest by detecting the interaction of the electron beam with the second surface; assembling the images of the cross section into a three-dimensional model of one or more of the features of interest. A method for forming an improved fiducial and determining the depth of an exposed feature in a nanoscale three-dimensional structure is presented.
Abstract:
Curtaining artifacts on high aspect ratio features are reduced by reducing the distance between a protective layer and feature of interest. For example, the ion beam can mill at an angle to the work piece surface to create a sloped surface. A protective layer is deposited onto the sloped surface, and the ion beam mills through the protective layer to expose the feature of interest for analysis. The sloped mill positions the protective layer close to the feature of interest to reduce curtaining.
Abstract:
A method and apparatus is provided for preparing samples for observation in a charged particle beam system in a manner that reduces or prevents artifacts. Material is deposited onto the sample using charged particle beam deposition just before or during the final milling, which results in an artifact-free surface. Embodiments are useful for preparing cross sections for SEM observation of samples having layers of materials of different hardnesses. Embodiments are useful for preparation of thin TEM samples.
Abstract:
An improved method for extracting and handling multiple samples for S/TEM analysis is disclosed. Preferred embodiments of the present invention make use of a micromanipulator that attaches multiple samples at one time in a stacked formation and a method of placing each of the samples onto a TEM grid. By using a method that allows for the processing of multiple samples, the throughput of sample prep in increased significantly.
Abstract:
A method for analyzing a sample with a charged particle beam including directing the beam toward the sample surface; milling the surface to expose a second surface in the sample in which the end of the second surface distal to ion source is milled to a greater depth relative to a reference depth than the end of the first surface proximal to ion source; directing the charged particle beam toward the second surface to form one or more images of the second surface; forming images of the cross sections of the multiple adjacent features of interest by detecting the interaction of the electron beam with the second surface; assembling the images of the cross section into a three-dimensional model of one or more of the features of interest. A method for forming an improved fiducial and determining the depth of an exposed feature in a nanoscale three-dimensional structure is presented.