Abstract:
Provided are reflective liquid crystal displays and methods of fabricating the same. the displays may include may include a first substrate, a reflective layer on the first substrate, a first electrodes on the reflective layer, a first insulating layer on the first electrodes, a second substrate facing the first substrate, a second electrode on the second substrate, a second insulating layer on the second electrode, and a liquid crystal layer between the first insulating layer and the second insulating layer. The second insulating layer has concavo-convex portions, which may be formed in contact with the liquid crystal layer to improve linearity of an incident light propagating from the second substrate toward the reflective layer and a reflected light propagating from the reflective layer toward the second substrate.
Abstract:
Disclosed is a dual mode function pixel that operates either in a first mode or in a second mode according to the intensity of a projected light to have a high visibility regardless of the intensity of projected light. The dual mode function pixel includes: a first membrane on which a self-luminescent element is formed; one or more membranes formed to surround the first membrane; and a lower layer formed below the first membrane and the one or more membranes to be spaced apart from the first membrane and the one or more membranes. The dual mode function pixel is controlled such that the self-luminescent element is driven either to emit light in a first mode operation or to selectively reflect a projected light by utilizing an interference of light generated between the first to one or more membranes and the lower layer in a second mode operation.
Abstract:
Provided is a method of manufacturing a thin film electrode for an electrochromic device, and an electrochromic device manufactured thereby. Specifically, a method of manufacturing a thin film electrode for an electrochromic device includes: synthesizing insoluble Prussian blue nanoparticles; adding a surfactant to the insoluble Prussian blue nanoparticles to form water-soluble Prussian blue nanoparticles; adding a solvent and a binder to the water-soluble Prussian blue nanoparticles to form a mixed solution; applying the mixed solution onto an electrode; and performing a drying process on the electrode applied with the mixed solution, wherein the drying process may be performed at 15° C. to 30° C.
Abstract:
Provided is an electrochromic display device including: a first substrate; a second substrate on the first substrate; an electrolyte layer disposed between the first substrate and the second substrate; a first transparent electrode provided between the electrolyte layer and the first substrate; second transparent electrodes provided between the electrolyte layer and the second substrate; a first electrochromic layer provided between the first transparent electrode and the electrolyte layer; and a second electrochromic layer provided between the second transparent electrodes and the electrolyte layer, wherein the second transparent electrodes each extend in a first direction and be disposed apart from each other in a second direction perpendicular to the first direction, the second electrochromic layer extends between the second transparent electrodes and contacts a lower surface of the second substrate, the first electrochromic layer includes an inorganic electrochromic material, and the second electrochromic layer includes an organic electrochromic material.
Abstract:
An electrochromic mirror includes a first electrode structure, a second electrode structure provided on the first electrode structure, and an electrolyte provided between the first and second electrode structures. Here, the first electrode structure further includes a metal layer, a graphene layer disposed on the metal layer, and an interface part disposed between the metal layer and the graphene layer. The interface part includes a micro/nano-porous polymer material.
Abstract:
Disclosed is an optical modulator. An optical modulator comprises a substrate, an upper transparent electrode on the substrate, a partition wall providing a chamber between the substrate and the upper transparent electrode, an optical modulation member provided in the chamber and disposed on the substrate, and an electrolyte filling the chamber and including a first metal in an ionic state. The optical modulation member comprises a reflection layer on the substrate, and a lower transparent electrode on the reflection layer.
Abstract:
Provided are a display device and a method of manufacturing the same. The display device includes a first substrate, a second substrate facing the first substrate and separated from the first substrate, a plurality of liquid crystal parts disposed between the first and second substrates, and separated in a horizontal direction from each other, spacers for separating the liquid crystal parts between the first and the second substrates, and immobilization patterns disposed in each of the liquid crystal parts, and including an optically active material.
Abstract:
Provided is an electrochromic device and a method for driving the electrochromic device, the electrochromic device including a first electrode, a first electrochromic layer, an electrolyte layer, a second electrochromic layer, and a second electrode which are laminated in sequence, at least one selected from among the group consisting of the first and second electrochromic layers and the electrolyte layer including scattering particles, and the electrochromic device further including an additional layer that contains the scattering particles and is disposed between the electrolyte layer and the first or second electrochromic layer.
Abstract:
A method of fabricating a display apparatus includes forming a lower electrode on a lower substrate, forming a partition structure and an ink-injection tube connected to one end of the partition structure, the partition structure including first partitions, and second partitions, and cell regions defined by the first and second partitions, covering the partition structure with an upper electrode, and injecting an electronic ink through the ink-injection tube to fill the cell regions of the partition structure.
Abstract:
Disclosed are dual mode display devices and methods of manufacturing the same. The dual mode display device may include a first substrate, a first electrode on the first substrate, a second substrate opposite to the first electrode and the first substrate, a second electrode between the second substrate and the first electrode, a third electrode between the first electrode and the second electrode, an optic switching layer between the first electrode and the third electrode, and an organic light-emitting layer between the second electrode and the third electrode.