Abstract:
Aspects of a method and system for communicatively coupling WLAN and femtocell networks utilizing a FC-to-WLAN network bridge and controller are provided. In this regard, data communicated via one or more femtocells and one or more WLAN access points may be managed via a FC-to-WLAN network bridge and controller communicatively coupled between a femtocell controller and an access point controller. The femtocell controller may be operable to manage and/or control operation of the one or more femtocells, and the access point controller may be operable to manage and/or control operation of the one or more WLAN access points. The FC-to-WLAN network bridge and controller, the femtocell controller, and the access point controller may intemperate to manage data communicated between a first end-user device communicatively coupled to one of the femtocells and a second end-user device communicatively coupled to one of the access points.
Abstract:
A universal network interface controller (UNIC) is provided for interfacing a host computer to a switch fabric, a packet network, or both. The UNIC includes encapsulation logic configured to encapsulate a CBP communication for transmission as switch fabric data on the switch fabric. Finally, the UNIC includes transmit logic configured to transmit the encapsulated CBP communication to the remote CBP device using the switch fabric.
Abstract:
A network management module includes a network interface module, memory, and a processing module. The network interface module is operable for coupling the network management module to a vehicle communication network. The processing module is operable to manage a global vehicle network communication protocol that includes instituting a content-based network packet processing protocol and managing the vehicle communication network to support the network packet processing protocol. The content-based network packet processing protocol includes determining content type of a packet, determining a processing requirement of the packet, and prioritizing execution of the processing requirement based on the content type.
Abstract:
A universal network interface controller (UNIC) is provided for interfacing a host computer to a switch fabric, a packet network, or both. The UNIC includes encapsulation logic configured to encapsulate a CBP communication for transmission as switch fabric data on the switch fabric. Finally, the UNIC includes transmit logic configured to transmit the encapsulated CBP communication to the remote CBP device using the switch fabric.
Abstract:
A system and method for exchanging channel, physical layer and data layer information and capabilities. The exchange of channel, physical layer and data layer capabilities enables optimal solutions for the provision of network services. In one embodiment, channel, physical layer and data layer capabilities are exchanged during an auto-negotiation process or LLDP messaging.
Abstract:
A switching module can route packets between a network fabric and a local network, both of which form a closed network such as a vehicular network. The switching module provides local network management functions, and handles packet transfers between the local network and the network fabric. The switching module uses network information, which can include information about packet content type and network topology, to determine a packet's priority, and an appropriate switching protocol to use for processing and routing packets.
Abstract:
A data bridge controls packet transfers between network fabrics forming a closed network, such as a vehicular network and a home network. The data bridge includes two or more sets of modules, each of which communicates with a different network fabric. When a packet is to be delivered between network fabrics, a first set of modules, which is used to communicate with a first network fabric, decides whether to accept the packet or discard it. If the packet is accepted, it is delivered to a second set of modules, which is used for communicating with a second network fabric. The second set of modules makes a second, independent decision about whether the packet will be sent to the second network fabric. Each set of modules can base its decision on packet content type, and may discard any packet not to be delivered to the other network.
Abstract:
A network management module includes a network interface module, memory, and a processing module. The network interface module is operable for coupling the network management module to a vehicle communication network. The processing module is operable to manage a global vehicle network communication protocol that includes instituting a content-based network packet processing protocol and managing the vehicle communication network to support the network packet processing protocol. The content-based network packet processing protocol includes determining content type of a packet, determining a processing requirement of the packet, and prioritizing execution of the processing requirement based on the content type.
Abstract:
A system for hierarchical management of devices may include memory and a processor. The processor may configure first devices of a first network with device operating policies to perform operations based at least on attributes of the first devices, where the operating policies prevent device interference. The processor may discover a second network of second devices managed by a second management entity and may negotiate with the second management entity to determine a primary management entity for the networks. The processor may receive device operating policies and attributes of the second devices when the second management entity is not the primary management entity. The processor may provide an adjusted device operating policy for a second device to the second management entity when the second device causes interference with a first device, the adjusted second device operating policy being based at least on attributes of the second device.
Abstract:
A switching module can route packets between a network fabric and a local network, both of which form a closed network such as a vehicular network. The switching module provides local network management functions, and handles packet transfers between the local network and the network fabric. The switching module uses network information, which can include information about packet content type and network topology, to determine a packet's priority, and an appropriate switching protocol to use for processing and routing packets.