Abstract:
A communications device having a communication channel interface between a cellular communications module and a Global Navigation system (GNSS) module is provided. The communication channel interface can be used to forward one or more of: a frequency offset correction message, a fine time assistance (FTA) message, and an assisted-GNSS (A-GNSS) message from the cellular communications module to the GNSS module; to forward timing and frequency information from the GNSS module to the cellular communications module to enable a delayed sleep mode wake up of the cellular communications module; to enable hybrid data fusion between the cellular communications module and the GNSS module; and/or to offload processes from the GNSS module to the cellular communications module.
Abstract:
A communication device configured to route communications between one or more out-of-coverage communication devices using one or more proximity services (ProSe). For example, the communication device can be configured as a mobile device-to network relay. The communication device can be configured to route communications associated with one more out-of-coverage communication devices that are serviced by the communication device. The communication device can be configured to utilize Layer 3 routing.
Abstract:
A communication device configured to route communications between one or more out-of-coverage communication devices and a base station using one or more proximity services (ProSe). For example, the communication device can be configured as a mobile device-to network relay. The communication device can be configured to route communications between two or more out-of-coverage communication devices that are serviced by the communication device. The communication device can be configured to utilize Layer 3 and/or internet protocol (IP) routing. A base station can be configured to route communications between two or communication devices serviced by the base station. The base station can also be communication coupled to another base station via a backhaul communication connection, and be configured to route communications from one or more communication devices serviced by the base station to one or more other communication devices serviced by the other base station via the backhaul communication connection.
Abstract:
Systems and methods for enabling in-device coexistence (IDC) are provided. In an embodiment, IDC interference is detected and determination is made whether or not the IDC interference can be remedied using an internal user equipment (UE) solution that does not involve the cellular network. If not, a preferred IDC solution is determined by the UE and sent to the cellular network in an IDC indication. The cellular network responds to the IDC indication with a network-identified IDC solution, which may or may not correspond to the preferred IDC solution. The UE can apply the network-identified IDC solution to remedy the IDC interference.
Abstract:
A method and apparatus relate to coexistence of multiple RF subsystems on a communication device. An apparatus may include a plurality of radio frequency (RF) subsystems configured to receive or transmit communication signals; and an interface for communication between a first RF subsystem of the plurality of RF subsystems and at least a second RF subsystem of the plurality of subsystems. The first RF subsystem can be configured to generate a timing offset for a coexistence signal, the timing offset being indicative of a difference between a time of generation of a signal and the time of an event associated with the signal. The timing offset can comprise a fixed offset generated based on at least one of a reference time from a periodic interrupt or direct access of a timer; and an offset adjustment based on a distance between the apparatus and a base station associated with the first RF subsystem.
Abstract:
Various methods and systems are provided for space, frequency and time domain coexistence of RF signals. In one example, among others, a communication device includes a coexistence manager capable of monitoring operating conditions of a cellular modem and a coexistence assistant capable of monitoring operating conditions of a wireless connectivity unit. The coexistence manager is capable of modifying operation of the modem and/or unit based on an operating condition change. In another example, a method includes detecting a change in antenna isolation and/or operating temperature of a FE filter, determining filtering characteristics of the FE filter based at least in part upon the change, and modifying communications of coexisting communication protocols based at least in part upon the filtering characteristics. In another example, a TX/RX configuration for coexisting communication protocols is determined and communications in a protocol is modified based at least in part upon the TX/RX configuration.
Abstract:
Systems and methods disclosed herein provide proximity services using a proximity services server that can be integrated into existing network infrastructure. Proximity services procedures are disclosed, including procedures for registration to a proximity services server, publication of the direct path of a proximity services enabled user equipment (UE) to a proximity services server, requesting proximity information by a UE, and notifying UEs that are in proximity.
Abstract:
Various methods and systems are provided for time domain coexistence of RF signals. In one example, among others, a method includes obtaining access to a WLAN channel during a free period of a coexisting cellular connection, providing a RDG to allow another device to transmit for a duration corresponding to at least a portion of a TXOP, and receiving a transmission during the duration. In another example, a method includes obtaining access to a WLAN channel during a transmission period of a coexisting cellular connection and providing a protection frame to defer transmissions from another device for a duration corresponding to at least a portion of a TXOP. In another example, a method includes determining a shift of a BT transaction based at least in part upon a schedule of cellular communications and shifting at least a portion of the BT transaction based upon the determined shift.
Abstract:
Systems and methods are provided to facilitate direct wireless communication between mobile communication devices while avoiding the need for mobile communication devices to periodically scan for in-range devices and avoiding unwanted breaks in traffic caused by changes in the source and/or destination IP address of packets. Mobile communication devices periodically update their positions to a server, which can send a notification when a mobile communication device comes within range. Further, mobile communication devices can encapsulate packets with an IP address used for direct wireless communication to facilitate this direct wireless communication without disrupting traffic over a core network.
Abstract:
A method and apparatus relate to coexistence of multiple RF subsystems on a communication device. An apparatus may include a plurality of radio frequency (RF) subsystems configured to receive or transmit communication signals; and an interference table indicative of zones of interference among the multiple RF subsystems, the zones of interference being based on RF measurements. At least one of the RF subsystems comprises a coexistence module configured to communicate coexistence-related messages with of the other RF subsystems, the coexistence-related messages being based on the zones of interference.