Abstract:
A geo-fence capable device is disclosed that is capable of performing an accurate geo-fence operation while minimizing power consumption. The device includes sensors, Wi-Fi connectability and GNSS. Sensors intermittently detect whether the device is in motion. When determined to be in motion, Wi-Fi is used to acquire a wireless access point list and to compare the access point list to previously-stored access points in order to determine whether the device is still within a particular region. GNSS is used to confirm exit from a region and to intermittently monitor whether the device has entered a new region. GNSS and application processor use can be minimized by utilizing sensor and Wi-Fi functionality as preliminary region monitors.
Abstract:
A communications device having a communication channel interface between a cellular communications module and a Global Navigation system (GNSS) module is provided. The communication channel interface can be used to forward one or more of: a frequency offset correction message, a fine time assistance (FTA) message, and an assisted-GNSS (A-GNSS) message from the cellular communications module to the GNSS module; to forward timing and frequency information from the GNSS module to the cellular communications module to enable a delayed sleep mode wake up of the cellular communications module; to enable hybrid data fusion between the cellular communications module and the GNSS module; and/or to offload processes from the GNSS module to the cellular communications module.
Abstract:
A multi-standard GNSS receiver, handle different global navigation satellite systems (GNSSs), determines with respect to a current time instant, the earliest broadcast timing based on corresponding satellite broadcast cycles for satellites in the different GNSSs. The multi-standard GNSS receiver acquires broadcast ephemeris at the determined earliest broadcast timing to determine its own first position. A search order is determined based on the corresponding satellite broadcast cycles and the current time instant. The multi-standard GNSS receiver may selectively utilize appropriate satellite receivers such as the GPS receiver and the GLONASS receiver to search for satellite signals based on the determined search order. Channels for different GNSSs are scanned to identify transmitting satellites based on the corresponding satellite broadcast cycles for ephemeris downloading. The satellite search is prioritized by comparing the current time instant with the corresponding satellite broadcast cycles.
Abstract:
A global navigation satellite system (GNSS) enabled device that is configured to distinguish reflected GNSS signals from direct GNSS signals utilizing three-dimensional models of the terrain in the proximity of the GNSS enabled device. By utilizing the identification of reflected GNSS signals, the reflected GNSS signals can be excluded and/or weighted to achieve a more accurate location determination.
Abstract:
A multi-standard GNSS receiver, handle different global navigation satellite systems (GNSSs), determines with respect to a current time instant, the earliest broadcast timing based on corresponding satellite broadcast cycles for satellites in the different GNSSs. The multi-standard GNSS receiver acquires broadcast ephemeris at the determined earliest broadcast timing to determine its own first position. A search order is determined based on the corresponding satellite broadcast cycles and the current time instant. The multi-standard GNSS receiver may selectively utilize appropriate satellite receivers such as the GPS receiver and the GLONASS receiver to search for satellite signals based on the determined search order. Channels for different GNSSs are scanned to identify transmitting satellites based on the corresponding satellite broadcast cycles for ephemeris downloading. The satellite search is prioritized by comparing the current time instant with the corresponding satellite broadcast cycles.
Abstract:
A communications device having a communication channel interface between a cellular communications module and a Global Navigation system (GNSS) module is provided. The communication channel interface can be used to forward one or more of: a frequency offset correction message, a fine time assistance (FTA) message, and an assisted-GNSS (A-GNSS) message from the cellular communications module to the GNSS module; to forward timing and frequency information from the GNSS module to the cellular communications module to enable a delayed sleep mode wake up of the cellular communications module; to enable hybrid data fusion between the cellular communications module and the GNSS module; and/or to offload processes from the GNSS module to the cellular communications module.
Abstract:
A method and apparatus for generating and distributing satellite tracking data to a remote receiver is disclosed. The method for includes extracting from satellite-tracking data initial model parameters representing a current orbit of at least one satellite-positioning-system satellite, computing an orbit model using the initial model parameters, wherein a duration of the orbit model is longer than a duration of the satellite-tracking data, comparing, for an overlapping period of time, the orbit model to the satellite-tracking data; and adjusting the orbit model to match the satellite tracking data for the overlapping period of time so as to form an adjusted orbit model. The adjusted orbit model comprises the long-term-satellite-tracking data.