Abstract:
Apparatus and methods for reducing latency in coordinated networks are provided. The apparatus and methods relate to a protocol that may be referred to as the Persistent Reservation Request (“p-RR”), which may be viewed as a type of RR (reservation request). p-RR's may reduce latency, on average, to one MAP cycle or less. A p-RR may be used to facilitate Ethernet audiovisual bridging. Apparatus and methods of the invention may be used in connection with coaxial cable based networks that serve as a backbone for a managed network, which may interface with a package switched network.
Abstract:
Systems and methods for transmitting packets over a network of communication channels are provide. A system according to the invention may include first and second nodes in communication with a coax backbone. The first node may further include a retransmission buffer. The system may also include a network access coordinator operative to coordinate access of the nodes to the coax backbone. In a time period at least one first packet is transmitted by the first node to the second node. The first packet may include an indication that retransmission service is applied. The first packet may also include a indication of the length corresponding to the packet. If, during the first time period the packet is not received by the second node, the second node is operative to send a retransmission request to the network access coordinator.
Abstract:
Embodiments include, but are not limited to, systems and methods for enabling Orthogonal Frequency Division Multiple Access (OFDMA) in the upstream in an Ethernet Passive Optical Network over Coax (EPoC) network. Embodiments include systems and methods for translating Ethernet Passive Optical Network (EPON) upstream time grants to OFDMA resources represented by individual subcarriers of an upstream OFDMA frame. In an embodiment, the translation of EPON upstream time grants to OFDMA resources ensures that Coaxial Network Units (CNUs) sharing an OFDMA frame do not use overlapping subcarriers within the frame. Embodiments further include systems and methods for timing upstream transmissions by the CNUs in order for the transmissions to be received within the same upstream OFDMA frame at a Fiber Coax Unit (ECU). Embodiments further include systems and methods for regenerating a data burst from OFDMA resources for transmission from the ECU to an Optical Line Terminal (OLT).
Abstract:
A communication device includes a communication interface and a processor. In one example, the processor generates an orthogonal frequency division multiplexing (OFDM) symbol that includes information modulated within sub-carriers and then interleaves the sub-carriers of the OFDM symbol to generate an interleaved OFDM symbol. This interleaving of the sub-carriers operates to write the plurality of sub-carriers to rows of a two dimensional (2D) array and read the plurality of sub-carriers from columns of the 2D array. This interleaving also operates to read a column of the columns using a bit-reversed address of the column when the bit-reversed address is less than a number of the columns and using the address of the column when the bit-reversed address is greater than or equal to the number of the columns. The processor transmits, via the communication interface, the interleaved OFDM symbol to another communication device.
Abstract:
Embodiments include systems and methods for enabling a physical layer (PHY) link signaling channel between a network termination modem and a cable modem in a cable network. The PHY link signaling channel is embedded within the same multi-carrier channel as the data and enables PHY link up between the network termination modem and cable modem without involvement of higher layers (e.g., MAC). The PHY link signaling channel can be implemented in the downstream (from the network termination modem to the cable modem(s)) or in the upstream from a cable modem to the network termination modem. Embodiments are applicable to any known cable network, and particularly to cable networks implementing the DOCSIS and EPoC standards.
Abstract:
A communication device having a Media Access Control (MAC) layer and a physical (PHY) layer may include a first physical channel for transferring at least one packet between the PHY layer and the MAC layer. The communication device may further include a second physical channel for transferring, to a transmitting device, a first table that indicates a number of bits to be loaded onto each of a plurality of tones and a second table that indicates a transmission power for the plurality of tones. The PHY layer may receive the at least one packet from the transmitting device over the plurality of tones and may transfer the at least one packet to the MAC layer via the first physical channel.
Abstract:
A device for coordinating frequency division multiplexing transmissions over a shared transmission medium may include a processor circuit configured to receive bandwidth requests from devices for transmissions over the shared transmission medium during a time period. A first bandwidth request may correspond to a point-to-multipoint transmission over the shared transmission medium. The processor circuit may be further configured to schedule bandwidth allocations on the shared transmission medium for the time period based at least in part on the bandwidth requests, where a first bandwidth allocation that corresponds to the first point-to-multipoint transmission is scheduled during the time period prior to other bandwidth allocations. The processor circuit may be further configured to transmit, over the shared transmission medium, an indication of the bandwidth allocations.
Abstract:
A communication device includes a media access control (MAC) and a physical layer (PHY) processor and supports multi-profile communications with one or more other communication devices. The PHY processor selects a profile based on one or more characteristics of a communication pathway between the device and the one or more other communication devices. A profile may include operational parameters such as modulation coding set (MCS), forward error correction (FEC) and/or error correction code (ECC), a number of bits per symbol per sub-carrier and/or sub-carrier mapping (e.g., such as based on orthogonal frequency division multiplexing (OFDM) or orthogonal frequency division multiple access (OFDMA)), cyclic prefix, channel(s) used in transmission, bit-filling and shortening, unicast and/or multicast transmission, and/or other operational parameters. The PHY processor also may be configured to operate within at least two different operational modes including a first mode of packet aggregation and a second mode of bit-filling and shortening.
Abstract:
Systems, methods, and devices for pairing devices in a wired network are provided. One method includes receiving configuration request signals at multiple devices. The method further includes exchanging public keys between two devices, generating a shared key using the public keys, determining a protected channel key using the shared key, and establishing a protected channel between the devices using the protected channel key. The method further includes transferring privacy credentials from one device to the other using the protected channel and using the privacy credentials to pair another device to the network.
Abstract:
Embodiments include systems and methods for enabling a physical layer (PHY) link signaling channel between a network termination modem and a cable modem in a cable network. The PHY link signaling channel is embedded within the same multi-carrier channel as the data and enables PHY link up between the network termination modem and cable modern without involvement of higher layers (e.g., MAC). The PHY link signaling channel can be implemented in the downstream (from the network termination modem to the cable modem(s)) or in the upstream from a cable modem to the network termination modem. Embodiments are applicable to any known cable network, and particularly to cable networks implementing the DOCSIS and EPoC standards.