Abstract:
A metal oxide thin film transistor and a manufacturing method thereof, an array substrate and a manufacturing method thereof, and a display device are provided. The manufacturing method of the metal oxide thin film transistor includes forming a gate electrode (141), a gate insulating layer (130), an active layer (113) and source and drain electrodes (121, 122) of a thin film transistor on a base substrate. The active layer is prepared by using a metal oxide thin film, and an electrochemical oxidation process is performed on the metal oxide thin film during preparing the active layer, and the metal oxide thin film after the electrochemical oxidation process is patterned to form the active layer of the thin film transistor. By using the manufacturing method of the embodiment, oxygen vacancies of the metal oxide thin film can be reduced, a concentration of free carriers thereof can be controlled, the prepared thin film transistor has good stability, and it is not necessary to add additional photolithography process, slightly affecting the cost.
Abstract:
The present invention provides a light-emitting apparatus, a method for forming a light-emitting apparatus, and a display apparatus. The light-emitting apparatus comprises at least one OLED light-emitting unit and at least one quantum dot light-emitting unit, wherein the at least one quantum dot light-emitting unit and the at least one OLED light-emitting unit are arranged in series.
Abstract:
The present disclosure relates to an antenna apparatus. The antenna apparatus may include a first substrate; a second substrate opposite the first substrate; a first antenna layer; an insulating layer; and a conductive layer. The first antenna layer may comprise a plurality of antenna units, each of the plurality of antenna units may comprise a radiation patch and is configured to receive the signals in one of the different frequency ranges. The insulating layer may comprise a plurality of sub-insulating layers; the conductive layer may comprise a plurality of conductive electrodes; and the plurality of the sub-insulating layers, the plurality of the conductive electrodes, and the plurality of the antenna units may be in one-to-one correspondence. The radiation patch, at least one of the plurality of conductive electrodes, and at least one of the plurality of sub-insulating layers may constitute a rectifier diode structure.
Abstract:
The present application discloses a method of fabricating a plurality of electrodes. The method includes forming a hydrophobic pattern containing a hydrophobic material on a base substrate, the hydrophobic pattern has a first ridge on a first edge of the hydrophobic pattern, the hydrophobic pattern has a thickness at the first ridge greater than that in a region outside a region corresponding to the first ridge; removing a portion of the hydrophobic pattern outside the region corresponding to the first ridge; and forming a first electrode on a first side of the first ridge and a second electrode on a second side of the first ridge.
Abstract:
This disclosure discloses an oxide semiconductor thin film, a thin film transistor, a manufacturing method and a device, belonging to the field of flat panel display. The oxide semiconductor thin film is made of an oxide containing zirconium and indium. A method of manufacturing the oxide semiconductor thin film comprises preparing a target using the oxide containing zirconium and indium, and sputtering the target to obtain the oxide semiconductor thin film.
Abstract:
The present disclosure provides a TFT, an array substrate, their manufacturing method, and a display device. The method for manufacturing the TFT includes a step of forming a pattern of a semiconductor active layer on a transparent substrate through a patterning process, and the pattern of the semiconductor active layer includes a lanthanum boride pattern.
Abstract:
A touch panel, a method for fabricating the same and a touch display device are disclosed. The touch panel includes touch units, each of which includes: a capacitor having a first terminal connected to a first bias voltage; a first transistor having an amorphous silicon active layer, one of a source and a drain of the first transistor is connected to a third bias voltage and the other is connected to a second terminal of the capacitor; a second transistor having an oxide semiconductor active layer, a gate of the second transistor is connected to a scan line, one of a source and a drain of the second transistor is connected to the second terminal of the capacitor and the other is connected to a data line. The touch panel further includes a light-shielding layer; an aperture portion is disposed on a part of the light-shielding layer.
Abstract:
This disclosure provides a thin film transistor and the preparation method thereof, an array substrate, and a display panel, so as to solve the problem that the active layer is prone to be corroded when a metal oxide thin film transistor is produced by a back channel etching process. The preparation method comprises: forming a gate electrode metal thin film on a base substrate, and allowing the gate electrode metal thin film to form a gate electrode metal layer comprising a gate electrode by a patterning process; forming a gate electrode insulating layer on the gate electrode metal layer; forming an active layer on the gate electrode insulating layer; preparing a metal nanoparticle layer on the active layer, said metal nanoparticle layer being used as an etching protection layer; forming a source and drain electrode metal thin film on the base substrate on which the above processes are finished, and allowing the source and drain electrode metal thin film to form a source and drain electrode metal layer comprising a source electrode and a drain electrode by a patterning process, wherein the source electrode and the drain electrode cover a part of the metal nanoparticle layer; removing or oxidizing the part of the metal nanoparticle layer which is not covered by the source electrode and the drain electrode in an oxygen-containing atmosphere; and forming a passivation layer on the source and drain electrode metal layer.
Abstract:
The present invention relates to the field of organic electroluminescent technology, particularly relates to an aromatic amine derivative, its preparation method, uses and organic electroluminescent devices. The technical aim of the present invention is to improve the film forming ability and the redox repeatability. The aromatic amine derivative has the structure of formula I, wherein, R1, R2, R3 and R4 each independently represent a hydrogen, a substituted or unsubstituted C1-C40 alkyl, a substituted or unsubstituted C1-C40 alkoxy, a substituted or unsubstituted C3-C40 cycloalkyl, a substituted or unsubstituted C6-C50 aryl group, a substituted or unsubstituted C3-C50 heteroaryl containing one or two heteroatoms selected from N, O and S, or a substituted or unsubstituted C10-C40 fused aryl group formed together with the phenyl group linked therewith; wherein, m, n, p and q each independently represent 0, 1, 2, 3, 4 or 5; the substituents are one or more groups selected from the group consisting of a halogen, a C1-C10 alkyl, a C1-C10 alkoxy, a C3-C20 cycloalkyl, a C6-C20 aryl group or a C4-C20 heteroaryl group. The present invention may be applied in organic electroluminescent devices.