Abstract:
Provided in the embodiments of the present disclosure are a control method and device based on brain signal, and a human-machine interaction device, which periodically acquire EEG signals and cerebral oxygen signals within a target period, generate an electroencephalogram (EEG) wave curve representing changes of the EEG signals and a cerebral oxygen wave curve representing changes of the cerebral oxygen signals respectively within the target period, determine whether the EEG wave curve and the cerebral oxygen wave curve satisfy a condition for controlling a controlled device to perform a target operation, and control the controlled device to perform the target operation when the EEG wave curve and the cerebral oxygen wave curve satisfy the condition.
Abstract:
A rehabilitation system includes: a rehabilitation robot configured to execute corresponding actions according to motion instructions; a brain wave detector configured to detect brain wave signals of a user; and control device configured to generate motion instructions according to brain wave signals to control the rehabilitation robot to execute corresponding actions.
Abstract:
A display method includes: processing a plurality of images to form base compositions; and presenting the base compositions with different images in a spatial arrangement which as a whole form a composite image viewable to a naked-eye viewer; wherein a subset of the plurality of images are selectively viewable as a modulated view to a user with an optical modulation device.
Abstract:
Disclosed are a wire grid polarizer and a manufacturing method thereof, and a display device, which relate to the display technical field. The manufacturing method of the wire grid polarizer includes: coating a polymer monomer on the surface of the base substrate; subjecting the polymer monomer at a position corresponding to the resin protrusions to a curing treatment; forming a pattern of the resin protrusions disposed on the surface of the base substrate with intervals being provided between the resin protrusions; forming a metal layer on the surface of the substrate provided with the resin protrusions; and forming a pattern of wire grid formed of the metal wires disposed on the surface of the base substrate with intervals being provided between the metal wires by a single patterning process, such that each of the metal wires covers at least one surface for polarization of one resin protrusion.
Abstract:
The present disclosure provides a pressure sensing device, including a sensor. The sensor includes a sheet-like piezoresistive material layer, and a first electrode structure and the second electrode structure arranged at opposite sides of the piezoresistive material layer respectively. At least one of the first electrode structure and the second electrode structure is provided with one or more protrusions at a surface facing the piezoresistive material layer, and the surface facing the piezoresistive material layer with the one or more protrusions forms an uneven surface.
Abstract:
The present disclosure provides a display panel, a method for manufacturing the same, and a display device. The display panel includes a power supply, and includes a display area and a non-display area. A solar cell is disposed in the non-display area and is configured to convert external light into electric energy when the external light is irradiated on the solar cell, and charge the power supply with the converted electric energy.
Abstract:
A micro-fluidic chip, a method for separating cells to be cultured, and a method for manufacturing the micro-fluidic chip are disclosed. The micro-fluidic chip includes a body, a culture chamber, a first channel and a second channel, the culture chamber, the first channel and the second channel are located in the body. The first channel and the second channel are intersected to form an intersection; the first channel is configured to transport a suspension liquid containing cells to be cultured; and an end of the second channel is communicated with the culture chamber and configured to inject a culture fluid into the culture chamber so as to bring a cell to be cultured disposed at the intersection into the culture chamber.
Abstract:
The present application discloses a signal transmitting device based on visible light communication, which includes a first control unit and a visible light emitting unit array, wherein the first control unit is configured to acquire target data and generate a light emission control instruction based on the target data according to a set encoding rule, and the light emission control instruction includes an instruction for controlling the light-dark state of each light emitting unit in the visible light emitting unit array, and the visible light emitting unit array is configured to transmit the target data in form of a visible light signal according to the light emission control instruction. The present application further discloses a signal receiving device based on visible light communication, a visible light communication system and a visible light communication method.
Abstract:
Provided in the embodiments of the present disclosure are a control method and device based on brain signal, and a human-machine interaction device, which periodically acquire EEG signals and cerebral oxygen signals within a target period, generate an electroencephalogram (EEG) wave curve representing changes of the EEG signals and a cerebral oxygen wave curve representing changes of the cerebral oxygen signals respectively within the target period, determine whether the EEG wave curve and the cerebral oxygen wave curve satisfy a condition for controlling a controlled device to perform a target operation, and control the controlled device to perform the target operation when the EEG wave curve and the cerebral oxygen wave curve satisfy the condition.
Abstract:
A transflective display panel and a transflective display device. The transflective display panel includes: a first substrate and a second substrate disposed opposite to each other, and blue phase liquid crystal disposed between the first substrate and the second substrate. The first substrate includes a first base substrate and pixel electrodes and common electrodes that are disposed on a side of the first base substrate that faces the second substrate, the pixel electrodes serve as reflecting electrodes or both the pixel electrodes and the common electrodes serve as reflecting electrodes. The second substrate comprises a second base substrate.