Abstract:
Systems and methods are provided for supporting wide-protocol interface across a multi-die interconnect interface. Data signals of a wide-protocol interface are split into a plurality of data streams. A handshake signal is established between a first circuit and a second circuit, whereby the first circuit and second circuit are dies of a multi-die device. The first circuit transmits the plurality of data streams to the second circuit via a plurality of multi-die interconnect channels. Each data stream of the plurality of data streams are compressed based on the handshake signal in order to provide wide-protocol interface with reduced number of required pins.
Abstract:
Systems and methods and systems are disclosed for allowing the medium access control (MAC) layer in a communication system within an integrated circuit or device to accurately determine a timestamp point and a timestamp value when, for example, the Precision Time Protocol (PTP) protocol is in use by the communication system. Such determination of accurate timestamp point and timestamp value may be used by the communication system to account for and to compensate for the time shift(s) from forward error correction (FEC) sublayer changes in a data frame that is transmitted by the MAC layer. Feedback is provided to the MAC from the FEC to allow the MAC to accurately determine the timestamp point and timestamp value align preamble of the data frame to the beginning of the FEC bit block that is output by the FEC sublayer.
Abstract:
The present application discloses apparatus and methods for increasing channel utilization for a high-speed serial interface of an integrated circuit (IC). A new circuit architecture is disclosed which provides circuitry that may be programmed flexibly to support a multitude of different channel bonding schemes. In accordance with one aspect of the invention, the new architecture decouples the granularity of control-signal channel bonding from the granularity of data-aggregation channel bonding. This advantageously allows optimization of configurations for both types of channel bonding. In another aspect of the invention, the logical boundaries of bonded user channels are decoupled from the physical boundaries of the PCS modules. This decoupling advantageously eliminates a rigid constraint of previous architectures.
Abstract:
A circuit arrangement includes a programmable logic device. The programmable logic device includes configuration logic circuitry. The programmable logic device also includes configurable interconnects. The circuit arrangement further includes a storage device configured to provide data to the programmable logic device. The storage device communicates with the programmable logic device via a bi-directional interface.
Abstract:
Integrated circuit packages with multiple integrated circuit dies are provided. A multichip package may include a substrate, a main die that is mounted on the substrate, and multiple transceiver daughter dies that are mounted on the substrate and that are coupled to the main die via corresponding Embedded Multi-die Interconnect Bridge (EMIB) interconnects formed in the substrate. Each of the main die and the daughter dies may include configurable adapter circuitry for interfacing with the EMIB interconnects. The adapter circuitry may include FIFO buffer circuits operable in a 1× mode or 2× mode and configurable in a phase-compensation mode, a clock-compensation mode, an elastic mode, and a register bypass mode to help support a variety of communications protocols with different data width and clocking requirements. The adapter circuitry may also include boundary alignment circuitry for reconstructing (de)compressed data streams.
Abstract:
Integrated circuit packages with multiple integrated circuit dies are provided. A multichip package may include a substrate, a main die that is mounted on the substrate, and multiple transceiver daughter dies that are mounted on the substrate and that are coupled to the main die via corresponding Embedded Multi-die Interconnect Bridge (EMIB) interconnects formed in the substrate. Each of the main die and the daughter dies may include configurable adapter circuitry for interfacing with the EMIB interconnects. The adapter circuitry may include FIFO buffer circuits operable in a 1x mode or 2x mode and configurable in a phase-compensation mode, a clock-compensation mode, an elastic mode, and a register bypass mode to help support a variety of communications protocols with different data width and clocking requirements. The adapter circuitry may also include boundary alignment circuitry for reconstructing (de)compressed data streams.
Abstract:
Systems and methods are provided for supporting wide-protocol interface across a multi-die interconnect interface. Data signals of a wide-protocol interface are split into a plurality of data streams. A handshake signal is established between a first circuit and a second circuit, whereby the first circuit and second circuit are dies of a multi-die device. The first circuit transmits the plurality of data streams to the second circuit via a plurality of multi-die interconnect channels. Each data stream of the plurality of data streams are compressed based on the handshake signal in order to provide wide-protocol interface with reduced number of required pins.
Abstract:
Integrated circuit packages with multiple integrated circuit dies are provided. A multichip package may include a substrate, a main die that is mounted on the substrate, and multiple transceiver daughter dies that are mounted on the substrate and that are coupled to the main die via corresponding Embedded Multi-die Interconnect Bridge (EMIB) interconnects formed in the substrate. Each of the main die and the daughter dies may include configurable adapter circuitry for interfacing with the EMIB interconnects. The adapter circuitry may include FIFO buffer circuits operable in a 1× mode or 2× mode and configurable in a phase-compensation mode, a clock-compensation mode, an elastic mode, and a register bypass mode to help support a variety of communications protocols with different data width and clocking requirements. The adapter circuitry may also include boundary alignment circuitry for reconstructing (de)compressed data streams.
Abstract:
An integrated circuit (IC) includes communication circuitry, a body bias generator, and a controller. The communication circuitry includes a physical medium attachment (PMA) and a physical coding sublayer (PCS). The body bias generator provides body bias signals to the PMA and PCS. The controller controls the body bias generator such that the body bias signals are controlled to improve a power consumption of the communication circuitry.
Abstract:
A circuit arrangement includes a programmable logic device. The programmable logic device includes configuration logic circuitry. The programmable logic device also includes configurable interconnects. The circuit arrangement further includes a storage device configured to provide data to the programmable logic device. The storage device communicates with the programmable logic device via a bi-directional interface.