Abstract:
In one form, a clock doubler includes a switched inverter, an exclusive logic circuit, and a control signal generation circuit. The switched inverter has first and second control inputs for respectively receiving first and second control signals, a signal input for receiving a clock input signal, and an output. The exclusive logic circuit has a first input for receiving the clock input signal, a second input coupled to the output of the switched inverter, and an output for providing a clock output signal. A control signal generation circuit provides the first and second control signals in response to the clock output signal. The clock doubler may be used in a clock distribution circuit for an integrated circuit that also includes a phase locked loop for providing the input clock signals, and a plurality of clock sub-domains each having one of the clock doublers.
Abstract:
In one form, a clock doubler includes a switched inverter, an exclusive logic circuit, and a control signal generation circuit. The switched inverter has first and second control inputs for respectively receiving first and second control signals, a signal input for receiving a clock input signal, and an output. The exclusive logic circuit has a first input for receiving the clock input signal, a second input coupled to the output of the switched inverter, and an output for providing a clock output signal. A control signal generation circuit provides the first and second control signals in response to the clock output signal. The clock doubler may be used in a clock distribution circuit for an integrated circuit that also includes a phase locked loop for providing the input clock signals, and a plurality of clock sub-domains each having one of the clock doublers.
Abstract:
A method for die pair partitioning can include providing a circuit die that has a metal stack and that includes a majority of logic transistors of an integrated circuit. The method can also include providing one or more additional circuit die that have one or more additional metal stacks of which at least one is connected to the metal stack of the circuit die and a majority of static random access memory and analog devices of the integrated circuit. The method can further include connecting at least one of the one or more additional metal stacks to the metal stack of the circuit die. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A graphics processing unit (GPU) of a processing system is partitioned into multiple dies (referred to as GPU chiplets) that are configurable to collectively function and interface with an application as a single GPU in a first mode and as multiple GPUs in a second mode. By dividing the GPU into multiple GPU chiplets, the processing system flexibly and cost-effectively configures an amount of active GPU physical resources based on an operating mode. In addition, a configurable number of GPU chiplets are assembled into a single GPU, such that multiple different GPUs having different numbers of GPU chiplets can be assembled using a small number of tape-outs and a multiple-die GPU can be constructed out of GPU chiplets that implement varying generations of technology.
Abstract:
Various semiconductor chip devices with stacked chips are disclosed. In one aspect, a semiconductor chip device is provided. The semiconductor chip device includes a first semiconductor chip that has a floor plan with a high heat producing area and a low heat producing area. At least one second semiconductor chip is stacked on the low heat producing area. The semiconductor chip device also includes means for transferring heat from the high heat producing area.
Abstract:
An integrated circuit includes first and second through-silicon via (TSV) circuits and a steering logic circuit. The first TSV circuit has a first TSV and a first multiplexer for selecting between a first TSV data signal received from the first TSV and a first local data signal for transmission to a first TSV output terminal. The second TSV circuit includes a second TSV and a second multiplexer for selecting between a second TSV data signal received from the second TSV and the first local data signal for transmission to a second TSV output terminal. The steering logic circuit controls the first multiplexer to select the first local data signal and the second multiplexer to select the second TSV data signal in a first mode, and the first multiplexer to select the first TSV data signal and the second multiplexer to select the first local data signal in a second mode.
Abstract:
An integrated circuit includes a multiple number of processor cores and a system management unit. The multiple number of processor cores each operate at one of a multiple number of performance states. The system management unit is coupled to the multiple number of processor cores, for setting performance states of the multiple number of processor cores. The system management unit boosts a first performance state of a first processor core of the multiple number of processor cores based on both a first temperature calculated from an estimated power consumption, and a second temperature based on a temperature measurement.
Abstract:
A method for implementing shared metal connectivity between 3D stacked circuit dies can include providing a first circuit die having a first metal stack. The method can additionally include providing a second circuit die having a second metal stack, wherein at least one metal layer of the second metal stack is utilized by both the first circuit die and the second circuit die. The method can also include connecting the second metal stack to the first metal stack of the first circuit die. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
Various semiconductor chip devices with stacked chips are disclosed. In one aspect, a semiconductor chip device is provided. The semiconductor chip device includes a first semiconductor chip that has a floor plan with a high heat producing area and a low heat producing area. At least one second semiconductor chip is stacked on the low heat producing area. The semiconductor chip device also includes means for transferring heat from the high heat producing area.
Abstract:
Systems, apparatuses and methods of adaptively controlling a cache operating voltage are provided that comprise receiving indications of a plurality of cache usage amounts. Each cache usage amount corresponds to an amount of data to be accessed in a cache by one of a plurality of portions of a data processing application. The plurality of cache usage amounts are determining based on the received indications of the plurality of cache usage amounts. A voltage level applied to the cache is adaptively controlled based on one or more of the plurality of determined cache usage amounts. Memory access to the cache is controlled to be directed to a non-failing portion of the cache at the applied voltage level.