Abstract:
A network of thermal sensors can be integrated within a semiconductor chip in a manner effective to provide local temperature monitoring and dynamic control of an associated device or system. The thermal sensors can include small area thermal ring oscillators located proximate to the core of a central processing unit (CPU), for example, and can be disposed on the chip at locations based on a designed output power density and attendant thermal gradients encountered during operation. In certain implementations, the presently-disclosed sensor configuration can be used to measure deviation from set threshold temperatures. Closed-loop control can be implemented to mitigate performance loss while adjusting the clock speed of the CPU independent of the system management unit.
Abstract:
A method for providing backside power can include providing a first circuit die having a first metal stack. The method can also include connecting a second metal stack of a second circuit die to the first metal stack of the first circuit die, wherein a backside power delivery network is located in a passivation layer of at least one of the first circuit die or the second circuit die. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
Various semiconductor chip devices with stacked chips are disclosed. In one aspect, a semiconductor chip device is provided. The semiconductor chip device includes a first semiconductor chip that has a floor plan with a high heat producing area and a low heat producing area. At least one second semiconductor chip is stacked on the low heat producing area. The semiconductor chip device also includes means for transferring heat from the high heat producing area.
Abstract:
In one form, a clock doubler includes a switched inverter, an exclusive logic circuit, and a control signal generation circuit. The switched inverter has first and second control inputs for respectively receiving first and second control signals, a signal input for receiving a clock input signal, and an output. The exclusive logic circuit has a first input for receiving the clock input signal, a second input coupled to the output of the switched inverter, and an output for providing a clock output signal. A control signal generation circuit provides the first and second control signals in response to the clock output signal. The clock doubler may be used in a clock distribution circuit for an integrated circuit that also includes a phase locked loop for providing the input clock signals, and a plurality of clock sub-domains each having one of the clock doublers.
Abstract:
In one form, a clock doubler includes a switched inverter, an exclusive logic circuit, and a control signal generation circuit. The switched inverter has first and second control inputs for respectively receiving first and second control signals, a signal input for receiving a clock input signal, and an output. The exclusive logic circuit has a first input for receiving the clock input signal, a second input coupled to the output of the switched inverter, and an output for providing a clock output signal. A control signal generation circuit provides the first and second control signals in response to the clock output signal. The clock doubler may be used in a clock distribution circuit for an integrated circuit that also includes a phase locked loop for providing the input clock signals, and a plurality of clock sub-domains each having one of the clock doublers.
Abstract:
A method for die pair partitioning can include providing a circuit die that has a metal stack and that includes a majority of logic transistors of an integrated circuit. The method can also include providing one or more additional circuit die that have one or more additional metal stacks of which at least one is connected to the metal stack of the circuit die and a majority of static random access memory and analog devices of the integrated circuit. The method can further include connecting at least one of the one or more additional metal stacks to the metal stack of the circuit die. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A method for circuit die stacking can include providing a first circuit die having a first metal stack, wherein the first circuit die corresponds to a primary thermal source of an integrated circuit including the first circuit die. The method can additionally include providing a second circuit die of the integrated circuit, wherein the second circuit die has a second metal stack and is configured for connection to at least one of a package substrate or an additional die. The method can also include connecting the first metal stack to the second metal stack. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A method for die pair partitioning can include providing a first circuit die having a first metal stack. The method can additionally include positioning a second circuit die having a second metal stack in a manner that places a temperature sensor in a transistor layer of the second circuit die in planar proximity to at least one hot spot located in an additional transistor layer of the first circuit die. The method can also include connecting the first metal stack of the first circuit die to the second metal stack of the second circuit die. Various other methods, systems, and computer-readable media are also disclosed.
Abstract:
A graphics processing unit (GPU) of a processing system is partitioned into multiple dies (referred to as GPU chiplets) that are configurable to collectively function and interface with an application as a single GPU in a first mode and as multiple GPUs in a second mode. By dividing the GPU into multiple GPU chiplets, the processing system flexibly and cost-effectively configures an amount of active GPU physical resources based on an operating mode. In addition, a configurable number of GPU chiplets are assembled into a single GPU, such that multiple different GPUs having different numbers of GPU chiplets can be assembled using a small number of tape-outs and a multiple-die GPU can be constructed out of GPU chiplets that implement varying generations of technology.
Abstract:
Various semiconductor chip devices with stacked chips are disclosed. In one aspect, a semiconductor chip device is provided. The semiconductor chip device includes a first semiconductor chip that has a floor plan with a high heat producing area and a low heat producing area. At least one second semiconductor chip is stacked on the low heat producing area. The semiconductor chip device also includes means for transferring heat from the high heat producing area.